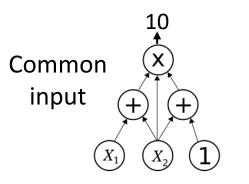
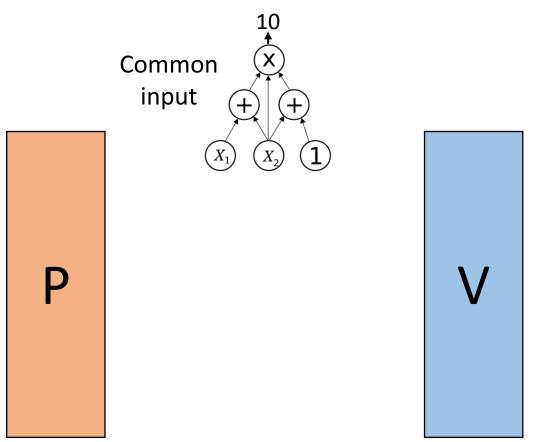
Sumcheck Arguments and Lattice-based Succinct arguments

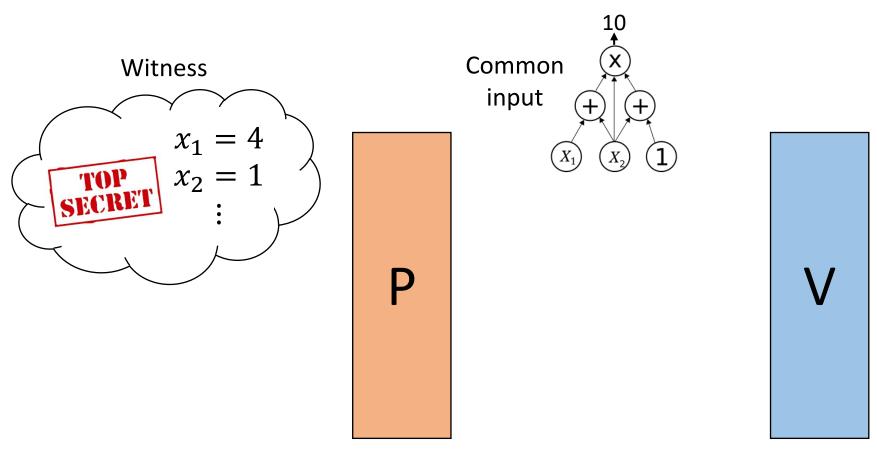
Jonathan Bootle (IBM Research – Zurich) Alessandro Chiesa (EPFL) **Katerina Sotiraki** (Yale University) <u>https://ia.cr/2021/333</u>

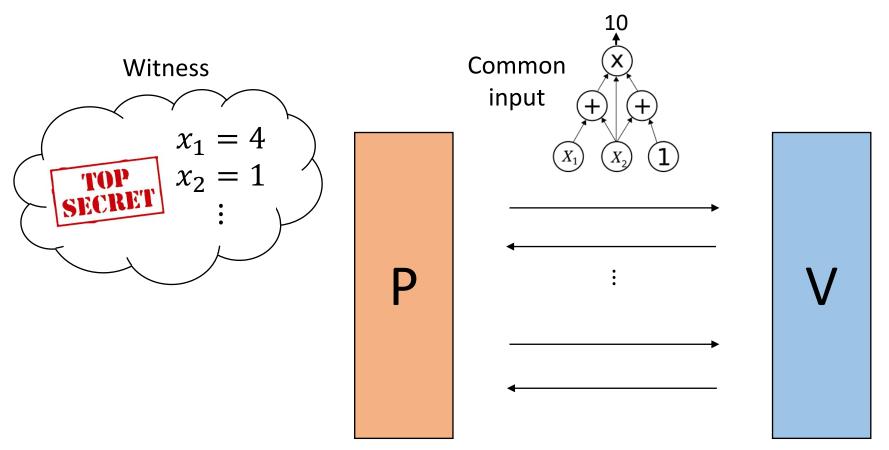
https://ia.cr/2023/930

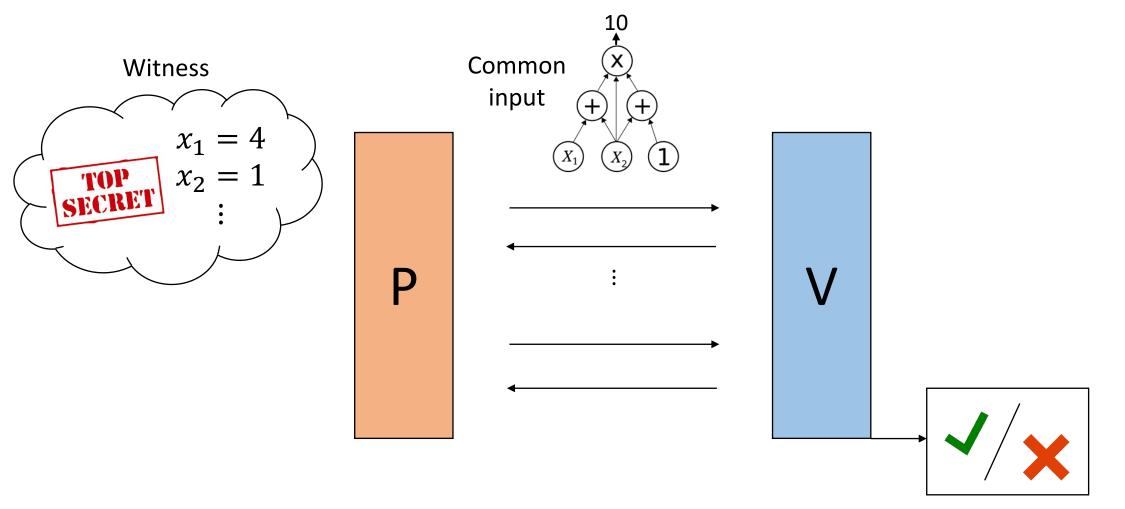
Slides by Jonathan Bootle

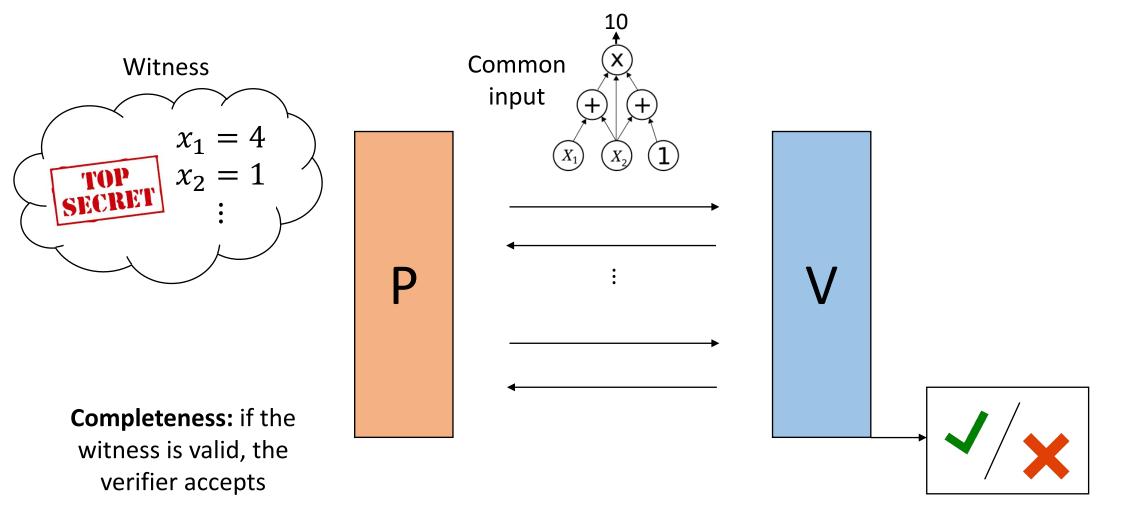


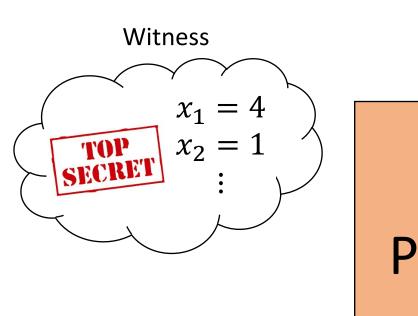




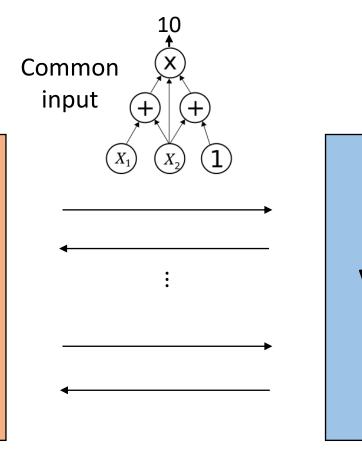






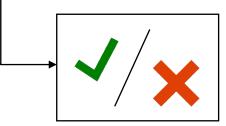


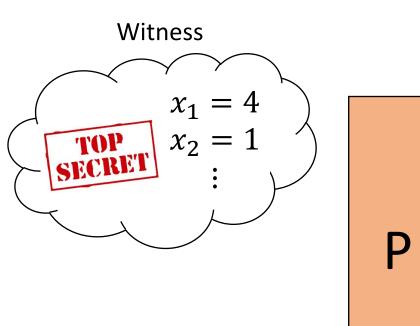
Completeness: if the witness is valid, the verifier accepts



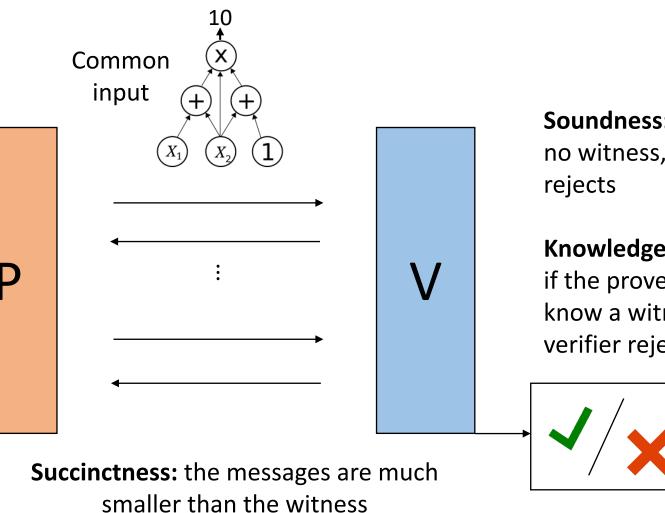
Soundness: if there is no witness, the verifier rejects

Knowledge soundness: if the prover does not know a witness, the verifier rejects





Completeness: if the witness is valid, the verifier accepts



Soundness: if there is no witness, the verifier rejects

Knowledge soundness: if the prover does not know a witness, the verifier rejects

Hash-based

e.g. Aurora [BSCRSVW19] Orion [XZS22] Large proofs (~1MB) Transparent

Pre-quantum, non-standard assumptions

e.g. [Groth16]

Tiny proofs (~1KB) Trusted setup

Hash-based

e.g. Aurora [BSCRSVW19] Orion [XZS22] Large proofs (~1MB) Transparent

Pre-quantum, non-standard assumptions

e.g. [Groth16]

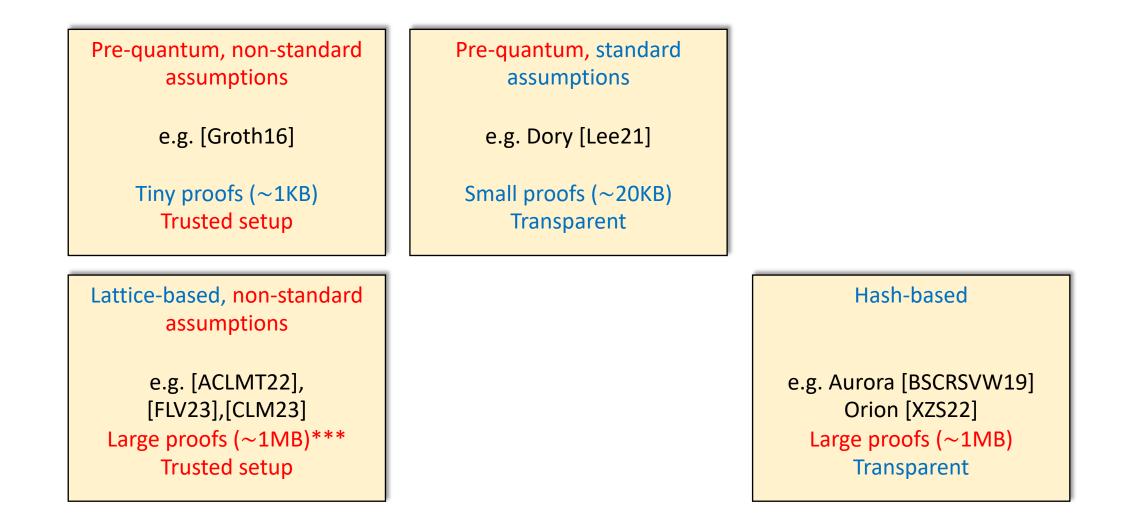
Tiny proofs (~1KB) Trusted setup Pre-quantum, standard assumptions

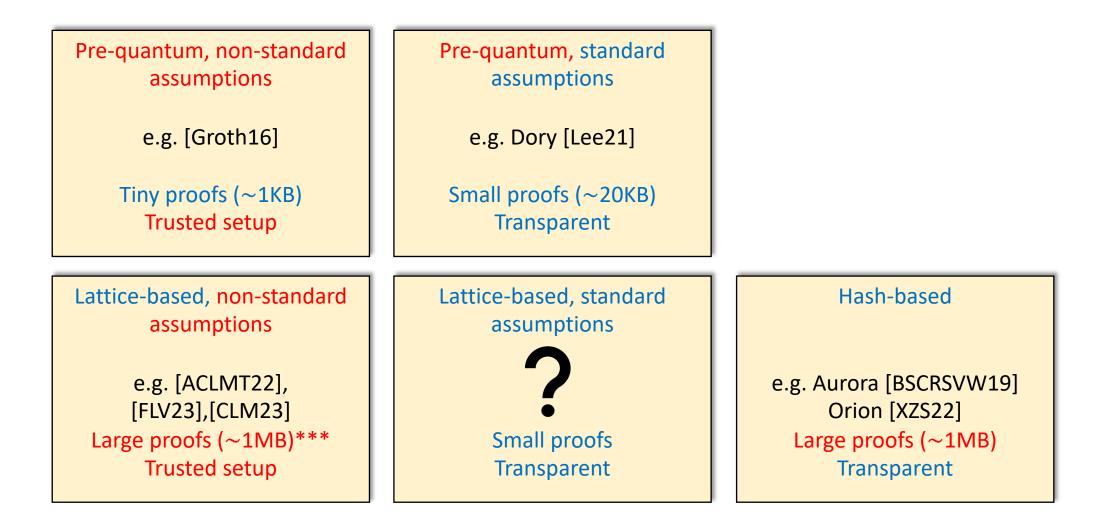
e.g. Dory [Lee21]

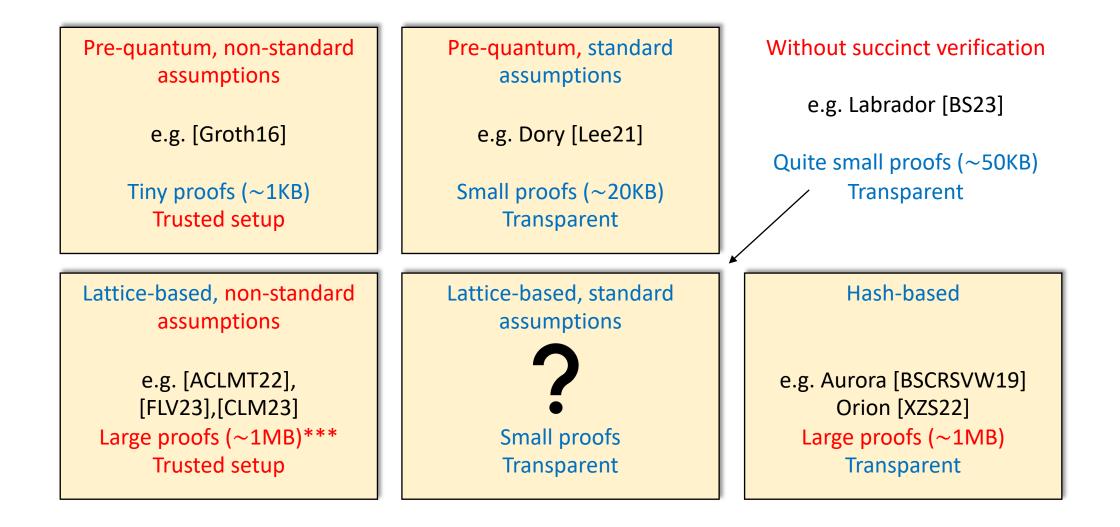
Small proofs (~20KB) Transparent

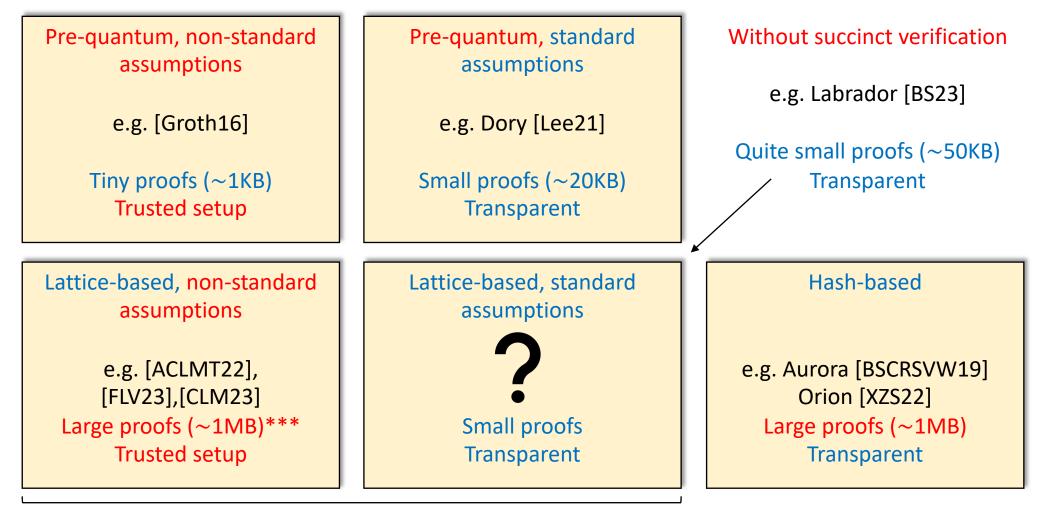
Hash-based

e.g. Aurora [BSCRSVW19] Orion [XZS22] Large proofs (~1MB) Transparent







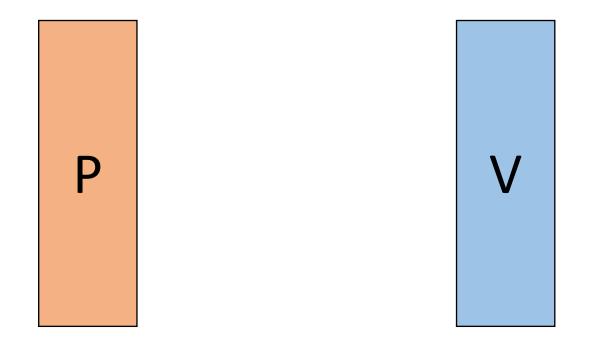


Homomorphic cryptography

Question: can we construct transparent, succinct arguments from standard lattice assumptions?

Given a polynomial $p(X_1, ..., X_\ell)$ over a field \mathbb{F} and a value $u \in \mathbb{F}$, prove that $\sum_{\underline{\omega} \in H^\ell} p(\omega_1, ..., \omega_\ell) = u$

Given a polynomial $p(X_1, ..., X_\ell)$ over a field \mathbb{F} and a value $u \in \mathbb{F}$, prove that $\sum_{\omega \in H^\ell} p(\omega_1, ..., \omega_\ell) = u$



Ρ

Given a polynomial $p(X_1, ..., X_\ell)$ over a field \mathbb{F} and a value $u \in \mathbb{F}$, prove that $\sum_{\omega \in H^\ell} p(\omega_1, ..., \omega_\ell) = u$

Computes polynomials $q_i(X_i) = \sum_{\underline{\omega} \in H^{\ell-i}} p(r_1, \dots, r_{i-1}, X_i, \omega_{i+1}, \dots, \omega_{\ell})$

$$q_{1} \in \mathbb{F}[X_{1}]$$

$$r_{1} \leftarrow \mathbb{F}$$

$$\vdots$$

$$q_{\ell} \in \mathbb{F}[X_{\ell}]$$

$$r_{\ell} \leftarrow \mathbb{F}$$

$$\downarrow$$

$$r_{\ell} \leftarrow \mathbb{F}$$

Ρ

Given a polynomial $p(X_1, ..., X_\ell)$ over a field \mathbb{F} and a value $u \in \mathbb{F}$, prove that $\sum_{\omega \in H^\ell} p(\omega_1, ..., \omega_\ell) = u$

Computes polynomials $q_i(X_i) = \sum_{\underline{\omega} \in H^{\ell-i}} p(r_1, \dots, r_{i-1}, X_i, \omega_{i+1}, \dots, \omega_{\ell})$

$$q_{1} \in \mathbb{F}[X_{1}]$$

$$r_{1} \leftarrow \mathbb{F}$$

$$\vdots$$

$$q_{\ell} \in \mathbb{F}[X_{\ell}]$$

$$r_{\ell} \leftarrow \mathbb{F}$$

Checks that $\sum_{\omega_1 \in H} q_1(\omega_1) = u$ $\sum_{\omega_2 \in H} q_2(\omega_2) = q_1(r_1)$ \vdots $\sum_{\omega_\ell \in H} q_\ell(\omega_\ell) = q_{\ell-1}(r_{\ell-1})$

Ρ

Given a polynomial $p(X_1, ..., X_\ell)$ over a field \mathbb{F} and a value $u \in \mathbb{F}$, prove that $\sum_{\underline{\omega} \in H^\ell} p(\omega_1, ..., \omega_\ell) = u$

Computes polynomials $q_i(X_i) = \sum_{\underline{\omega} \in H^{\ell-i}} p(r_1, \dots, r_{i-1}, X_i, \omega_{i+1}, \dots, \omega_{\ell})$

$$q_{1} \in \mathbb{F}[X_{1}]$$

$$r_{1} \leftarrow \mathbb{F}$$

$$\vdots$$

$$q_{\ell} \in \mathbb{F}[X_{\ell}]$$

$$r_{\ell} \leftarrow \mathbb{F}$$

Checks that $\sum_{\omega_1 \in H} q_1(\omega_1) = u$ $\sum_{\omega_2 \in H} q_2(\omega_2) = q_1(r_1)$ \vdots $\sum_{\omega_\ell \in H} q_\ell(\omega_\ell) = q_{\ell-1}(r_{\ell-1})$

Evaluates p to check that $p(r_1, ..., r_\ell) = q_\ell(r_\ell)$

Ρ

Given a polynomial $p(X_1, ..., X_\ell)$ over a field \mathbb{F} and a value $u \in \mathbb{F}$, prove that $\sum_{\underline{\omega} \in H^\ell} p(\omega_1, ..., \omega_\ell) = u$

Computes polynomials $q_i(X_i) = \sum_{\underline{\omega} \in H^{\ell-i}} p(r_1, \dots, r_{i-1}, X_i, \omega_{i+1}, \dots, \omega_{\ell})$

$$q_{1} \in \mathbb{F}[X_{1}]$$

$$r_{1} \leftarrow \mathbb{F}$$

$$\vdots$$

$$q_{\ell} \in \mathbb{F}[X_{\ell}]$$

$$r_{\ell} \leftarrow \mathbb{F}$$

Checks that

$$\sum_{\omega_1 \in H} q_1(\omega_1) = u$$

$$\sum_{\omega_2 \in H} q_2(\omega_2) = q_1(r_1)$$

$$\vdots$$

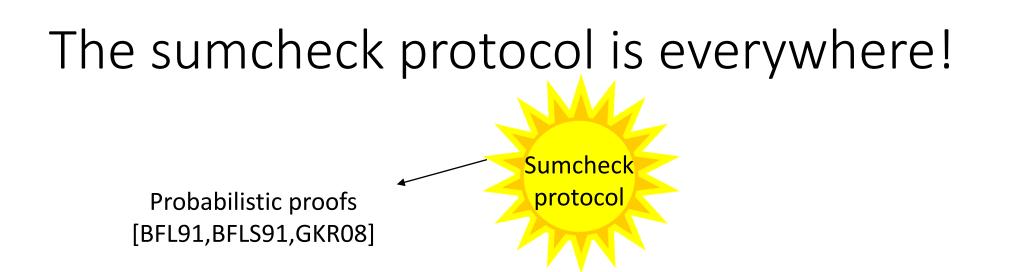
$$\sum_{\omega_\ell \in H} q_\ell(\omega_\ell) = q_{\ell-1}(r_{\ell-1})$$

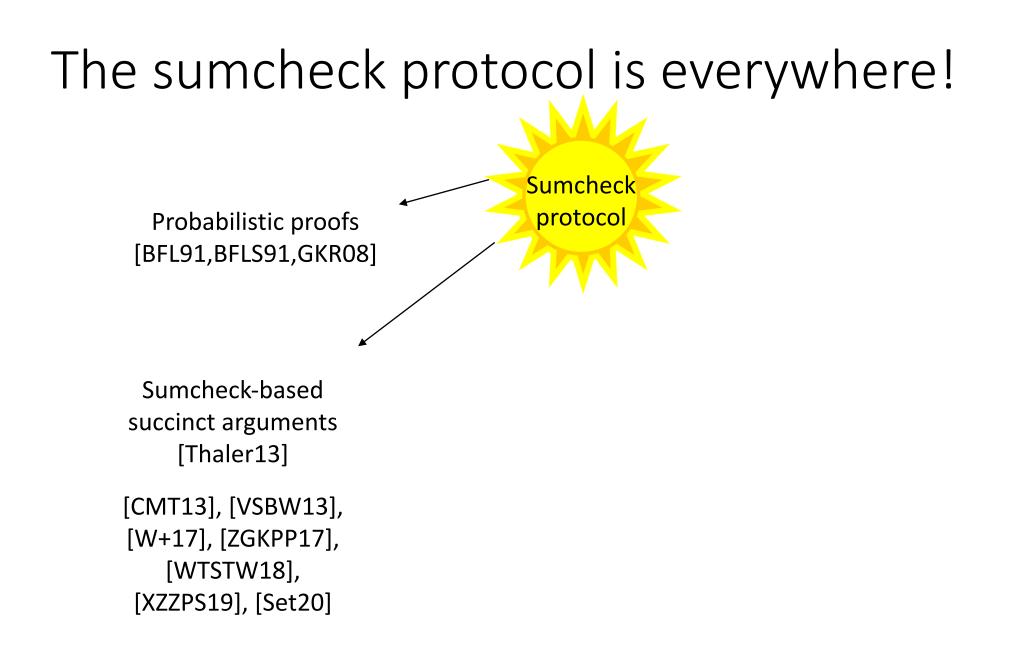
Evaluates p to check that $p(r_1, \dots, r_\ell) = q_\ell(r_\ell)$

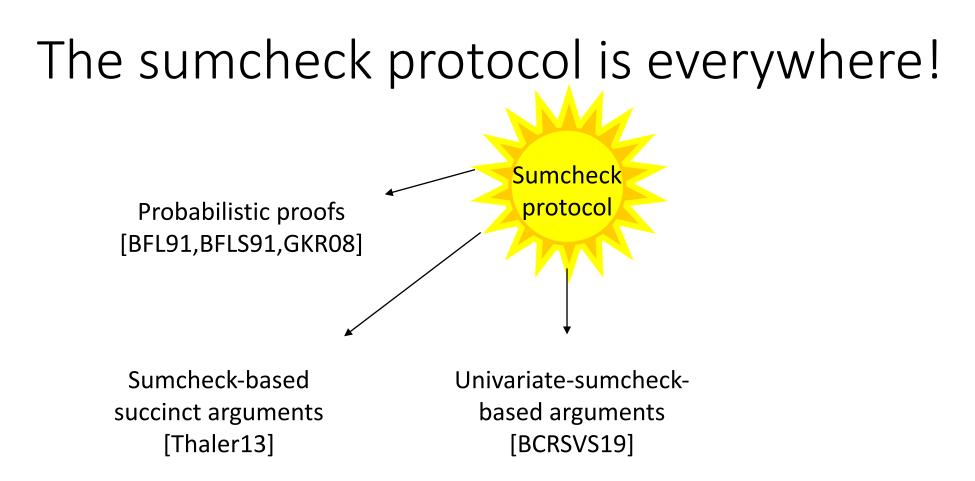
Soundness: If $\sum_{\underline{\omega} \in H^{\ell}} p(\omega_1, ..., \omega_{\ell}) \neq u$ then V accepts with probability at most $\frac{\ell \cdot \deg(p)}{|\mathbb{F}|}$.

The sumcheck protocol is everywhere!

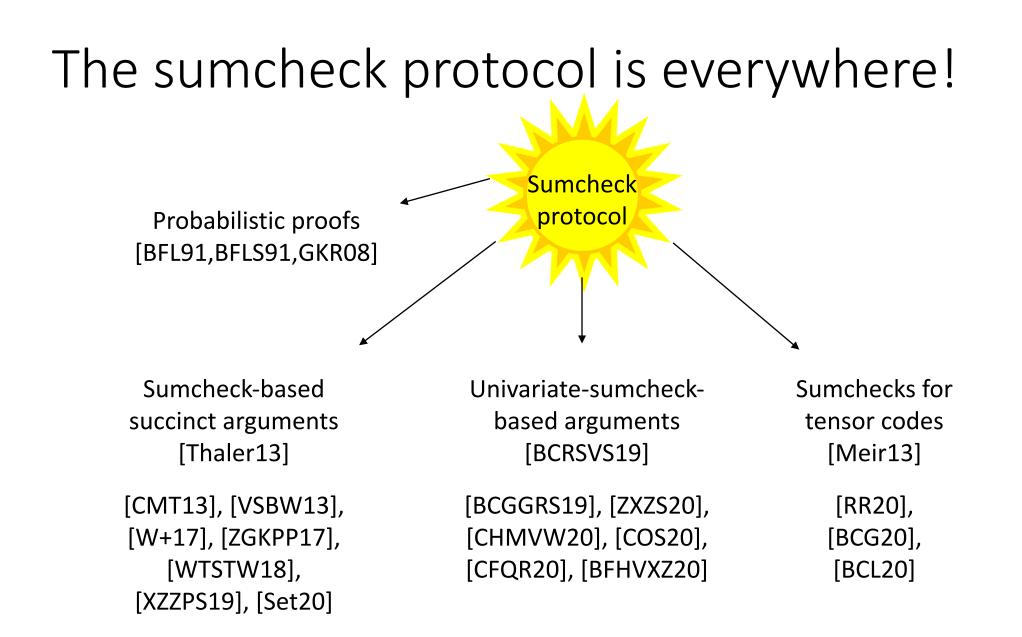
Sumcheck protocol

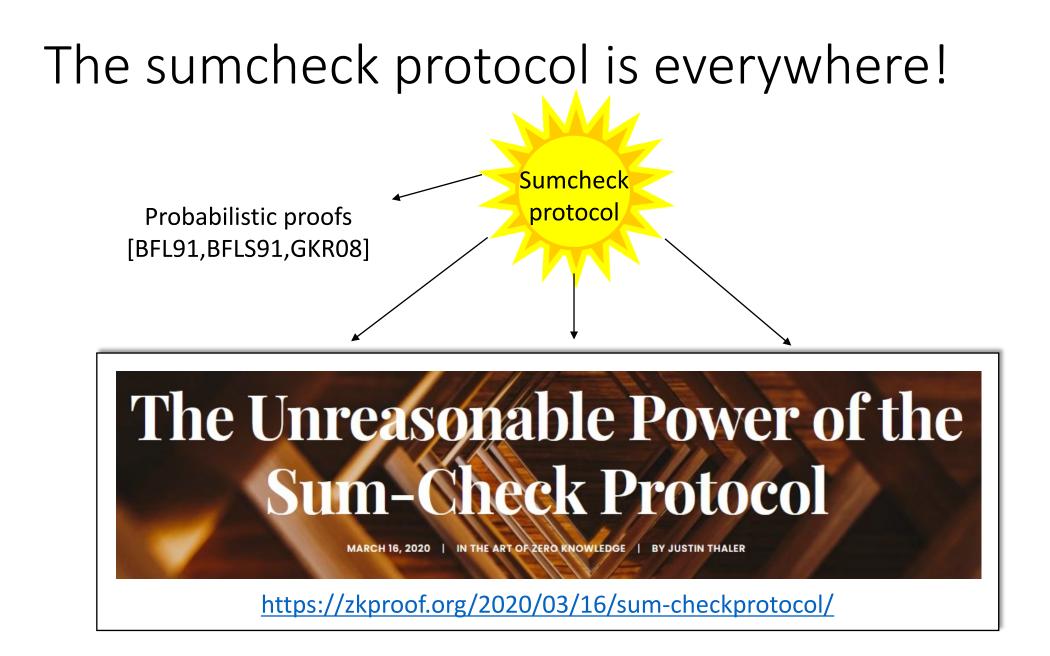




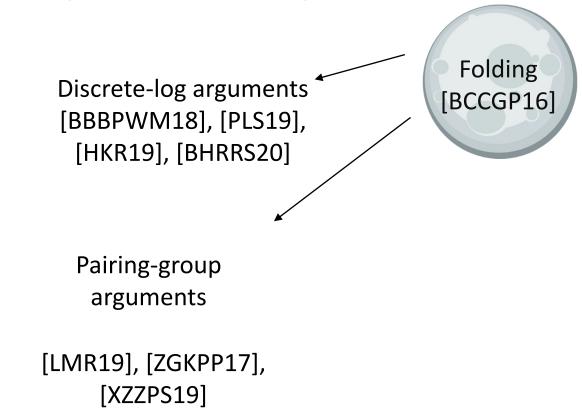


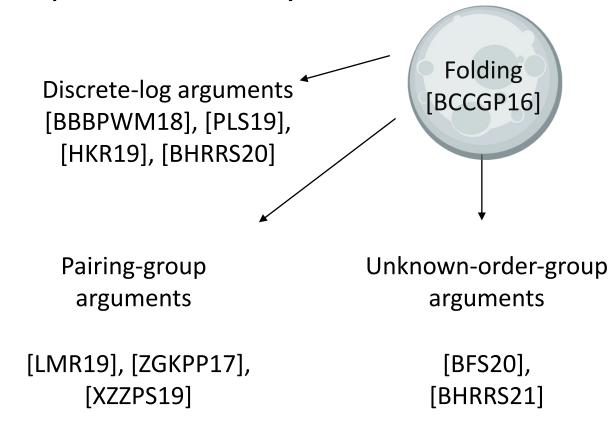
[CMT13], [VSBW13], [W+17], [ZGKPP17], [WTSTW18], [XZZPS19], [Set20] [BCGGRS19], [ZXZS20], [CHMVW20], [COS20], [CFQR20], [BFHVXZ20]

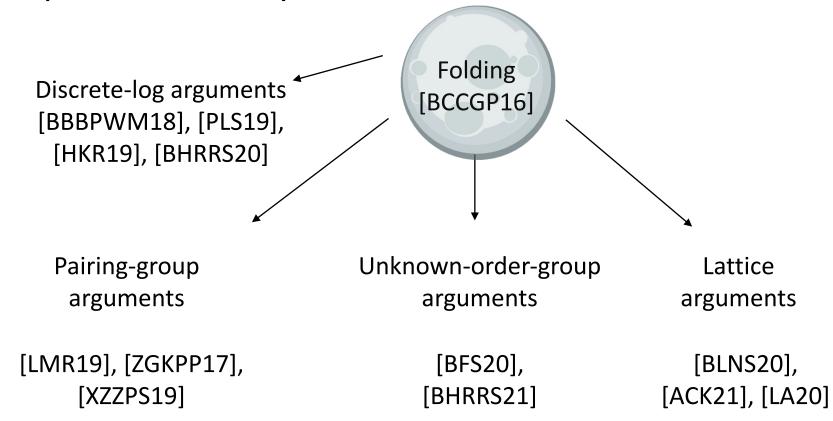




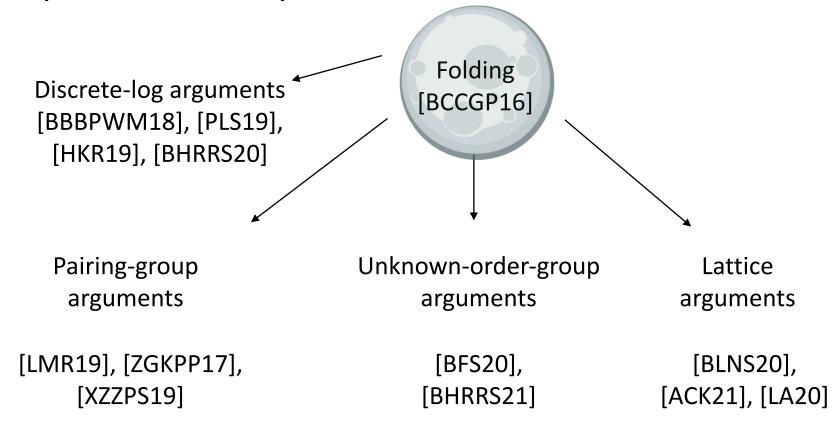
Discrete-log arguments ⁴ [BBBPWM18], [PLS19], [HKR19], [BHRRS20]





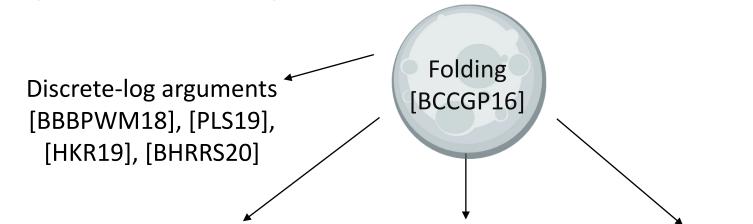


Folding technique based on homomorphic enc: a separate body of work?



Some unifying abstractions: [BMMTV19,AC20,BDFG21]

Folding technique based on homomorphic enc: a separate body of work?



[BBBPWM18] implemented in Rust, Haskell, Javascript, and deployed by Blockstream, and in Monero, Mimblewimble and more...

Aim, Fire: Bulletproofs Is a Crypto Privacy Breakthrough

https://www.coindesk.com/aim-fire-bulletproofs-breakthrough-privacy-blockchains

Some unifying abstractions: [BMMTV19,AC20,BDFG21]

Results

From two bodies of work...

Sumcheck protocol

Sumchecks and commitment schemes

[VSBW13], [Wah+17], [ZGKPP17], [WTSTW18], [XZZPS19], [BCRSVS19], [BCGGRS19], [ZXZS20], [CHMVW20], [COS20], [CFQR20], [BFHVXZ20], [Set20]

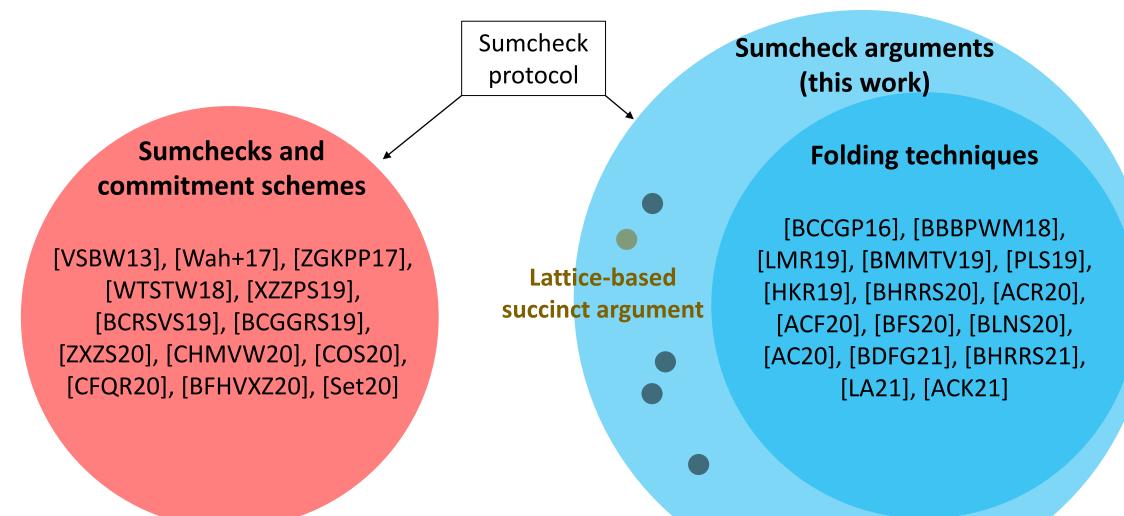
Folding techniques

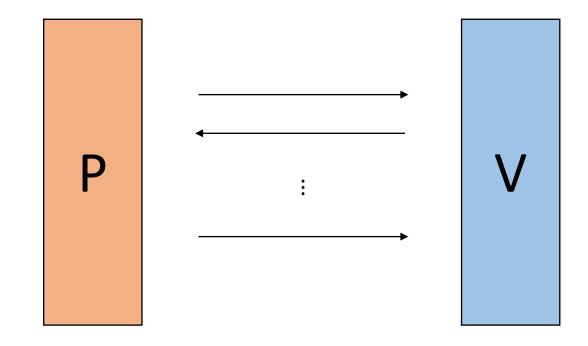
[BCCGP16], [BBBPWM18], [LMR19], [BMMTV19], [PLS19], [HKR19], [BHRRS20], [ACR20], [ACF20], [BFS20], [BLNS20], [AC20], [BDFG21], [BHRRS21], [LA21], [ACK21]

...to a unified perspective

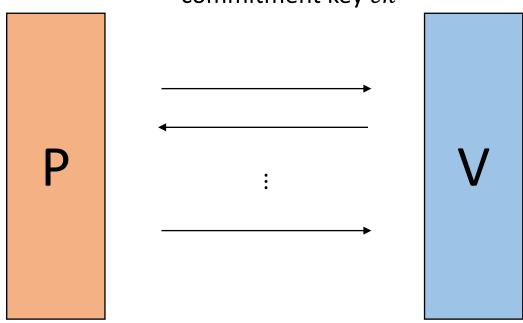
Sumcheck Sumcheck arguments protocol (this work) **Sumchecks and Folding techniques** commitment schemes [BCCGP16], [BBBPWM18], [VSBW13], [Wah+17], [ZGKPP17], [LMR19], [BMMTV19], [PLS19], [WTSTW18], [XZZPS19], [HKR19], [BHRRS20], [ACR20], [BCRSVS19], [BCGGRS19], [ACF20], [BFS20], [BLNS20], [ZXZS20], [CHMVW20], [COS20], [AC20], [BDFG21], [BHRRS21], [CFQR20], [BFHVXZ20], [Set20] [LA21], [ACK21]

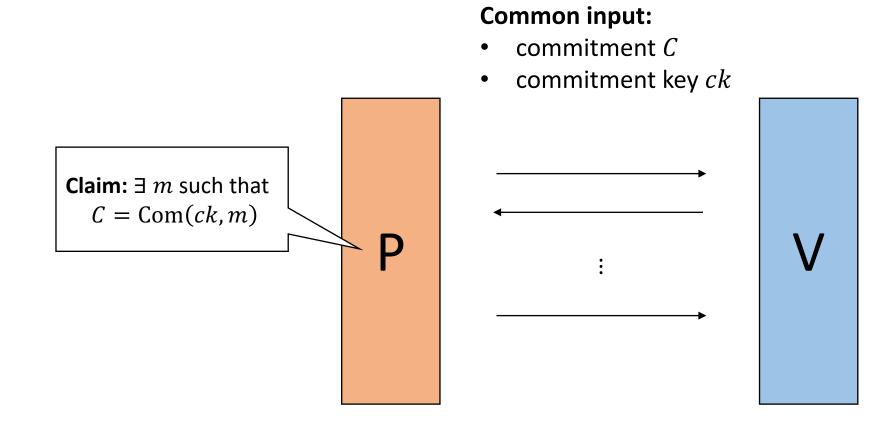
...to a unified perspective

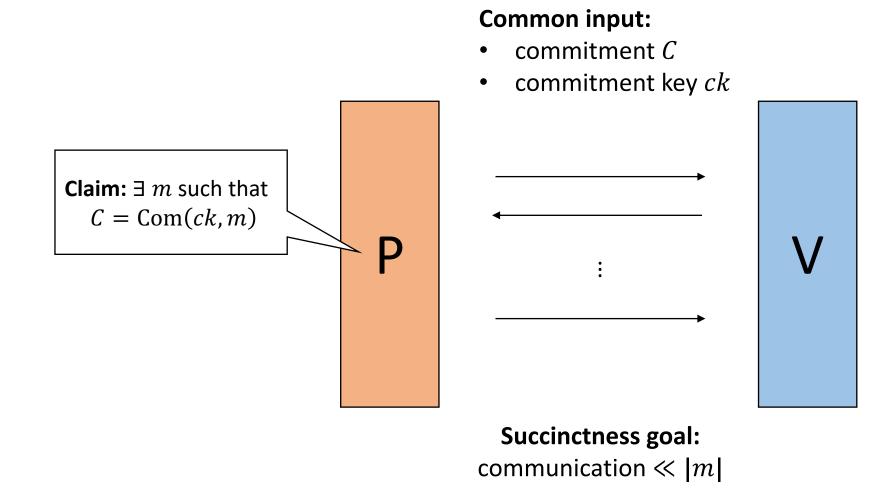


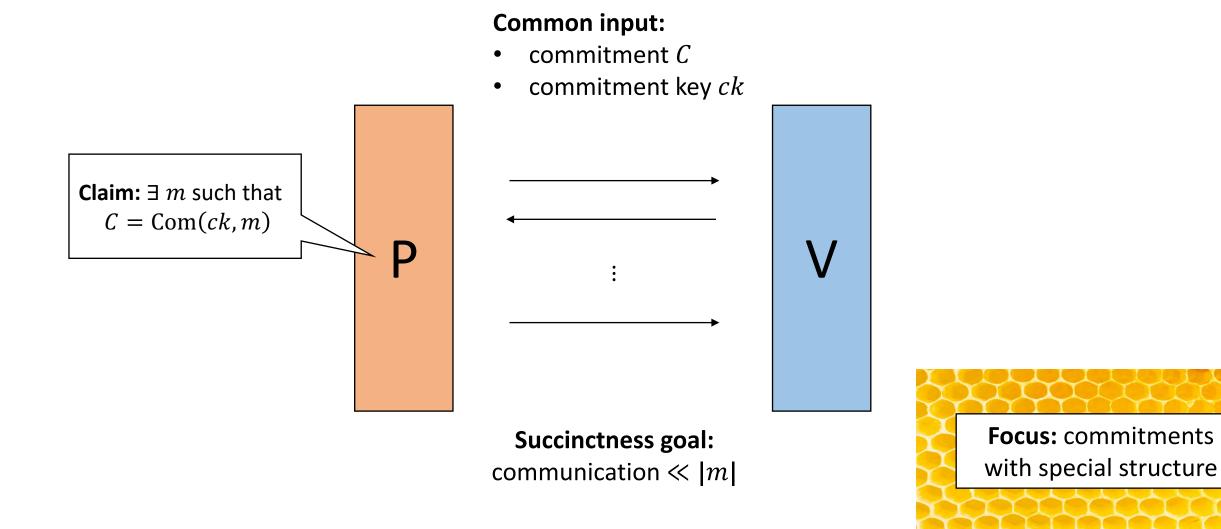


- commitment *C*
- commitment key *ck*



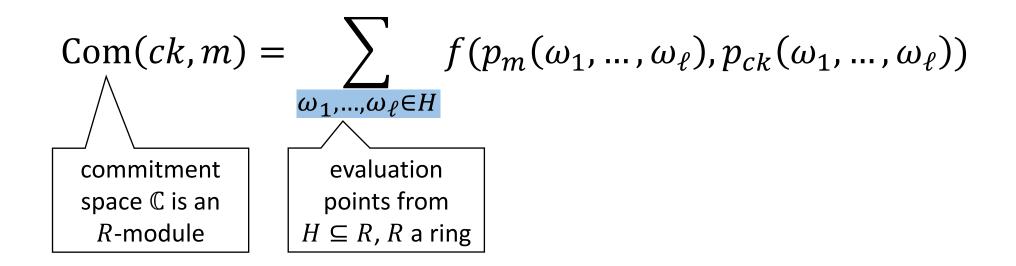


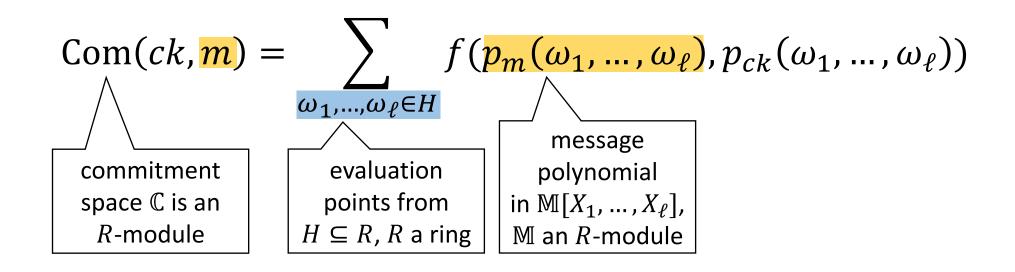


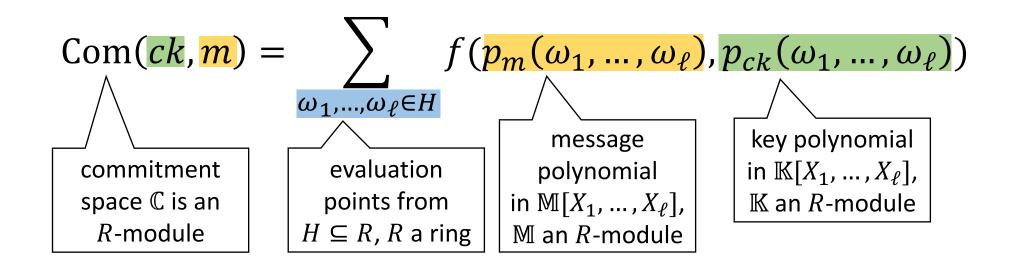


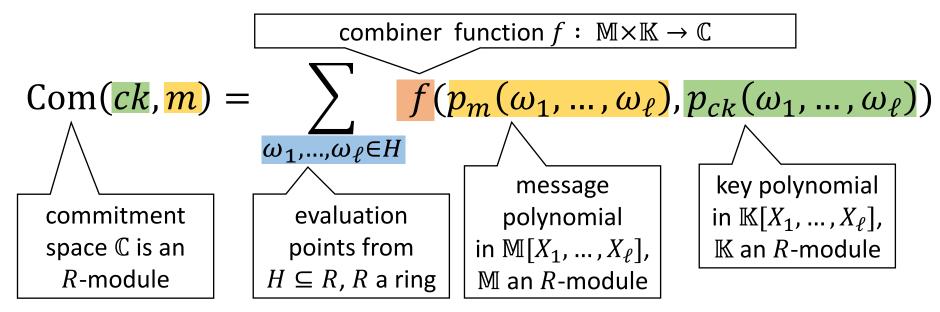
$$\operatorname{Com}(ck,m) = \sum_{\omega_1,\dots,\omega_\ell \in H} f(p_m(\omega_1,\dots,\omega_\ell), p_{ck}(\omega_1,\dots,\omega_\ell))$$

$$Com(ck,m) = \sum_{\substack{\omega_1, \dots, \omega_\ell \in H \\ evaluation \\ points from \\ H \subseteq R, R a ring}} f(p_m(\omega_1, \dots, \omega_\ell), p_{ck}(\omega_1, \dots, \omega_\ell))$$









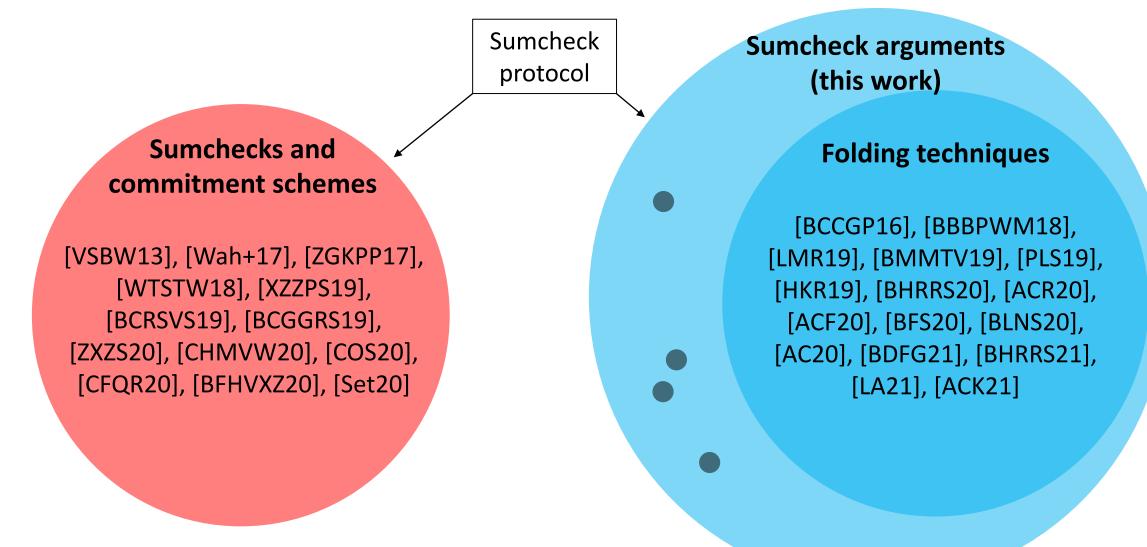
Main result: sumcheck arguments

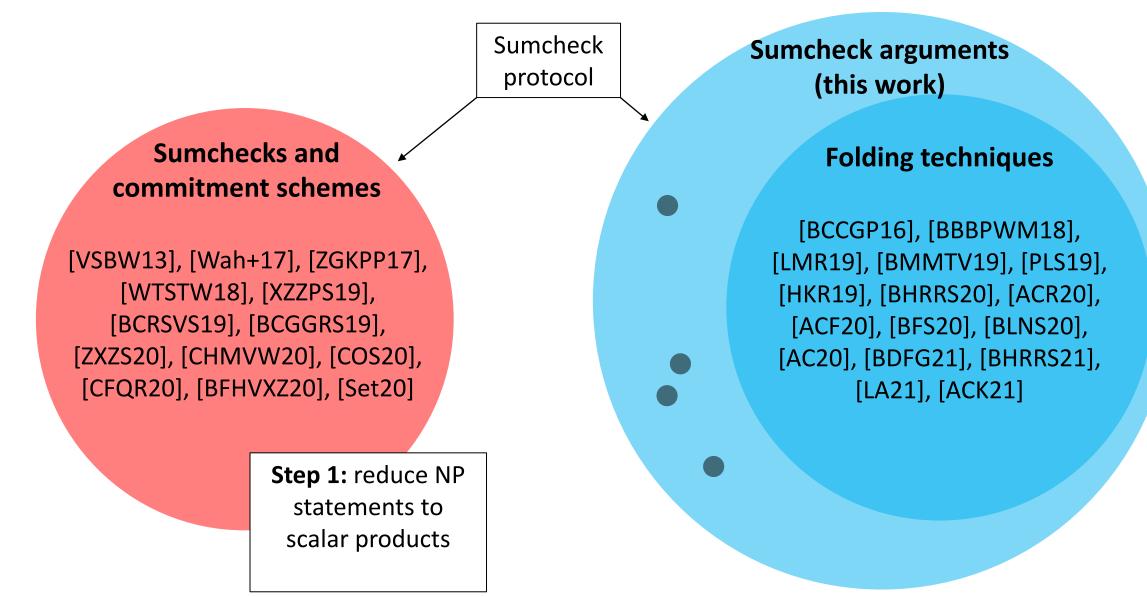
Theorem 1:

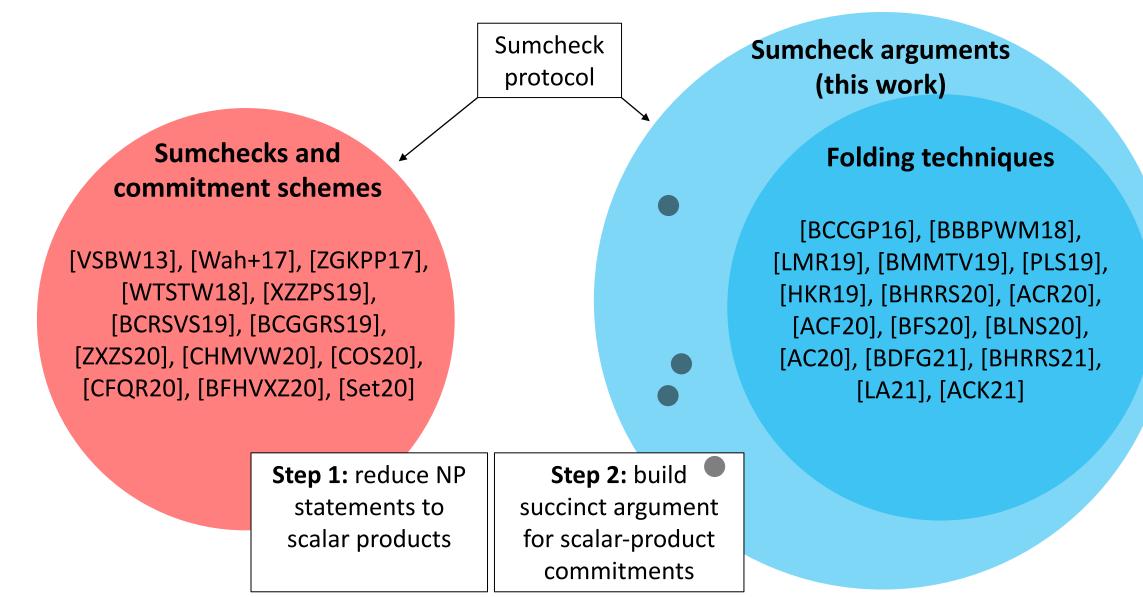
If CM is **sumcheck-friendly** and **invertible**. The sumcheck protocol applied to

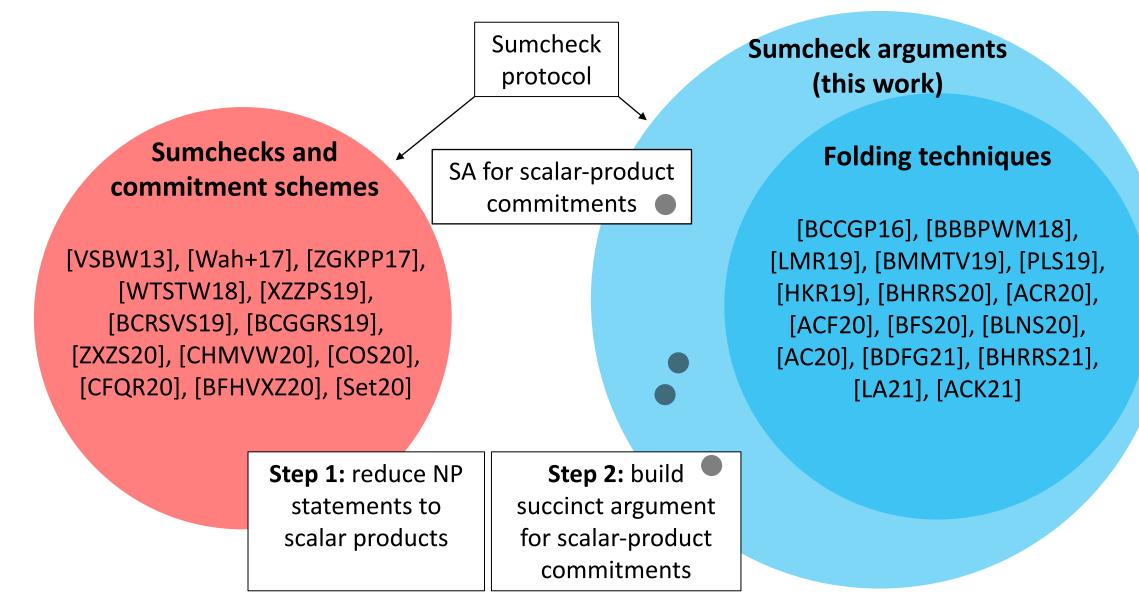
 $p(X_1,\ldots,X_\ell) = f\left(p_m(X_1,\ldots,X_\ell), p_{ck}(X_1,\ldots,X_\ell)\right) \in \mathbb{C}[X_1,\ldots,X_\ell]$

(with one extra verifier check) is a succinct argument of knowledge with communication $\ell \cdot \deg(p)$









[Bootle Chiesa Sotiraki '21]

Corollary: Assuming SIS is hard over $R_q \coloneqq \mathbb{Z}_q[X]/\langle X^d + 1 \rangle$ and $p \ll q$ primes, there is a *zero-knowledge* succinct argument of knowledge for NP with

	ize	Proof size	Verifier time	Prover time	R1CS Ring
R_p $O(n)$ ops in R_p , R_q $O(n)$ ops in R_p , R_q $O(\log n)$ elem	ms of R_q	$O(\log n)$ elems of P	$O(n)$ ops in R_p , R_q	$O(n)$ ops in R_p , R_q	R_p

[Bootle Chiesa Sotiraki '21]

Corollary: Assuming SIS is hard over $R_q \coloneqq \mathbb{Z}_q[X]/\langle X^d + 1 \rangle$ and $p \ll q$ primes, there is a *zero-knowledge* succinct argument of knowledge for NP with

R1CS RingProver timeVerifier timePro	of size
R_p $O(n)$ ops in R_p, R_q $O(n)$ ops in R_p, R_q $O(\log n)$	elems of R_q

Concurrent work:

- [LA21] gives impossibility results and improvements for lattice POKs
- [ACK21] gives lattice-based succinct arguments for NP

[Bootle Chiesa Sotiraki '21]

Corollary: Assuming SIS is hard over $R_q \coloneqq \mathbb{Z}_q[X]/\langle X^d + 1 \rangle$ and $p \ll q$ primes, there is a *zero-knowledge* succinct argument of knowledge for NP with

R1CS Ring	Prover time	verifi	er time	Proof size	
R _p	$O(n)$ ops in R_p , R_q	O(n) op:	in R_p, R_q	$O(\log n)$ elems of R_q	

Concurrent work:

- [LA21] gives impossibility results and improvements for lattice POKs
- [ACK21] gives lattice-based succinct arguments for NP

[Bootle Chiesa Sotiraki '23]

Corollary: Assuming SIS is hard over $R_q \coloneqq \mathbb{Z}_q[X]/\langle X^d + 1 \rangle$ and $p \ll q$ primes, there is a *zero-knowledge* succinct argument of knowledge for NP with preprocessing such that

R1CS Ring	Prover time	Verifier time	Proof size
R _p	$O(n)$ ops in R_p , R_q	$polylog(n)ops$ in R_p , R_q	polylog(n) elems of R_q

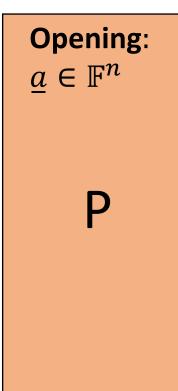
Concurrent work:

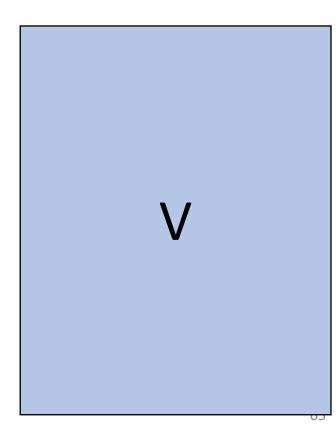
- [LA21] gives impossibility results and improvements for lattice POKs
- [ACK21] gives lattice-based succinct arguments for NP

Techniques

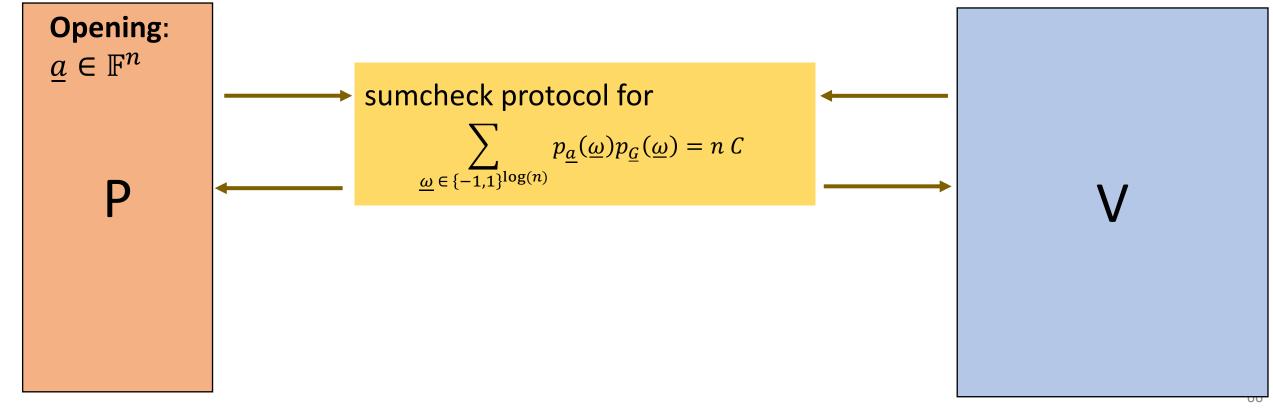
- commitment $C \in \mathbb{G}$
- key $\underline{G} \in \mathbb{G}^n$ Claim: $\exists \underline{a} \in \mathbb{F}^n$ s.t. $C = \langle \underline{a}, \underline{G} \rangle$

- commitment $C \in \mathbb{G}$
- key $\underline{G} \in \mathbb{G}^n$ Claim: $\exists \underline{a} \in \mathbb{F}^n$ s.t. $C = \langle \underline{a}, \underline{G} \rangle$

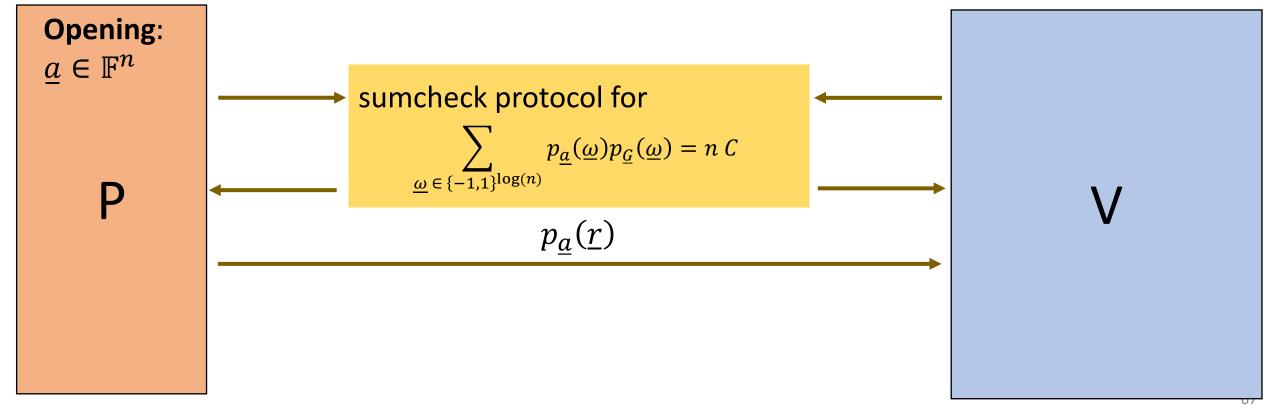




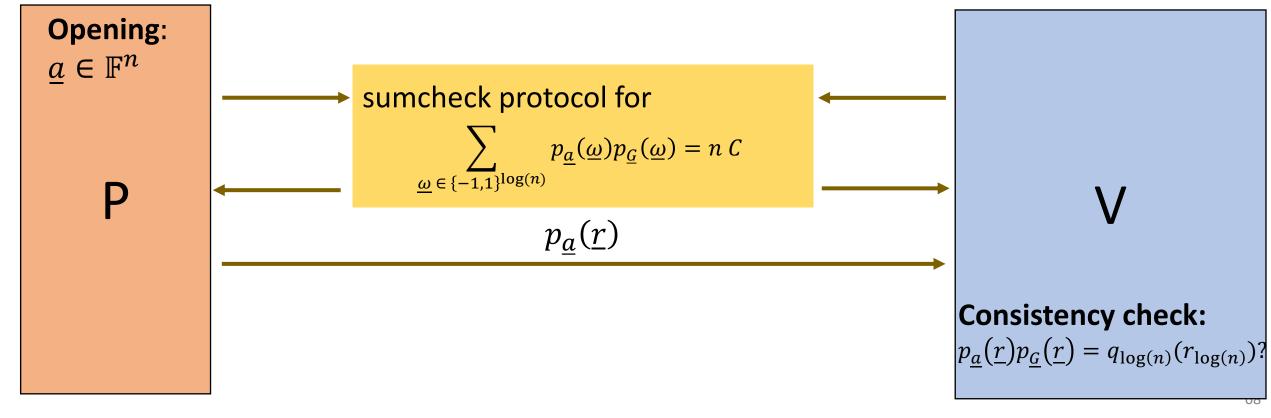
- commitment $C \in \mathbb{G}$
- key $\underline{G} \in \mathbb{G}^n$ Claim: $\exists \underline{a} \in \mathbb{F}^n$ s.t. $C = \langle \underline{a}, \underline{G} \rangle$



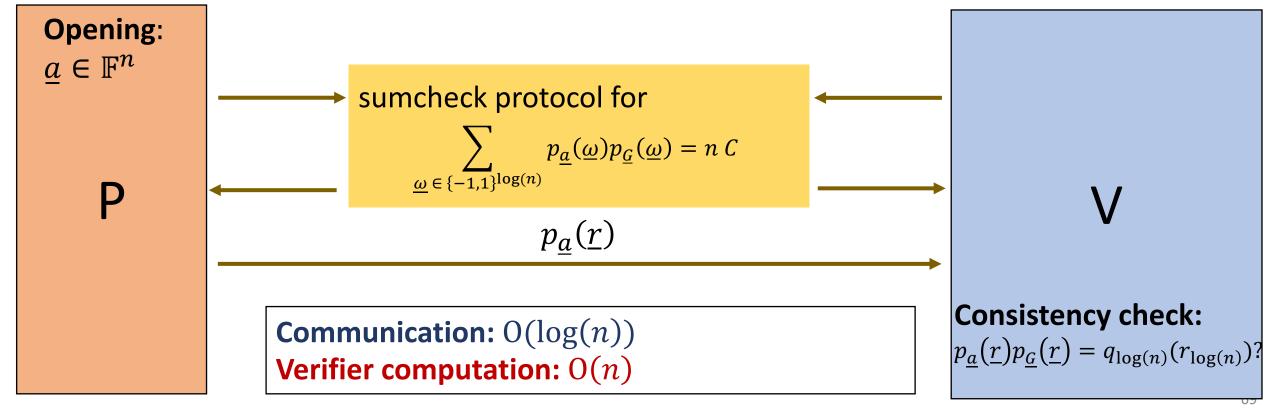
- commitment $C \in \mathbb{G}$
- key $\underline{G} \in \mathbb{G}^n$ Claim: $\exists \underline{a} \in \mathbb{F}^n$ s.t. $C = \langle \underline{a}, \underline{G} \rangle$



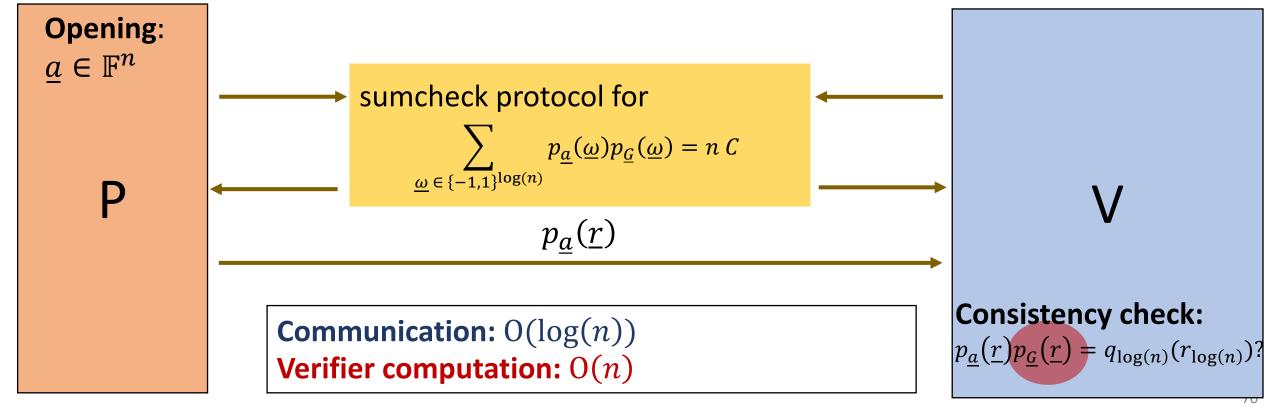
- commitment $C \in \mathbb{G}$
- key $\underline{G} \in \mathbb{G}^n$ Claim: $\exists \underline{a} \in \mathbb{F}^n$ s.t. $C = \langle \underline{a}, \underline{G} \rangle$



- commitment $C \in \mathbb{G}$
- key $\underline{G} \in \mathbb{G}^n$ Claim: $\exists \underline{a} \in \mathbb{F}^n$ s.t. $C = \langle \underline{a}, \underline{G} \rangle$



- commitment $C \in \mathbb{G}$
- key $\underline{G} \in \mathbb{G}^n$ Claim: $\exists \underline{a} \in \mathbb{F}^n$ s.t. $C = \langle \underline{a}, \underline{G} \rangle$

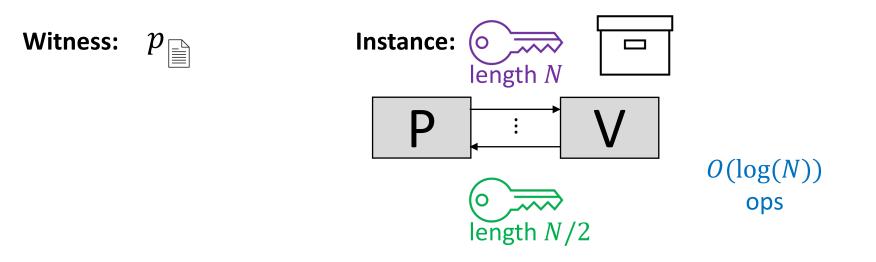


Succinct verification via delegation [Bootle Chiesa Sotiraki '23]

:

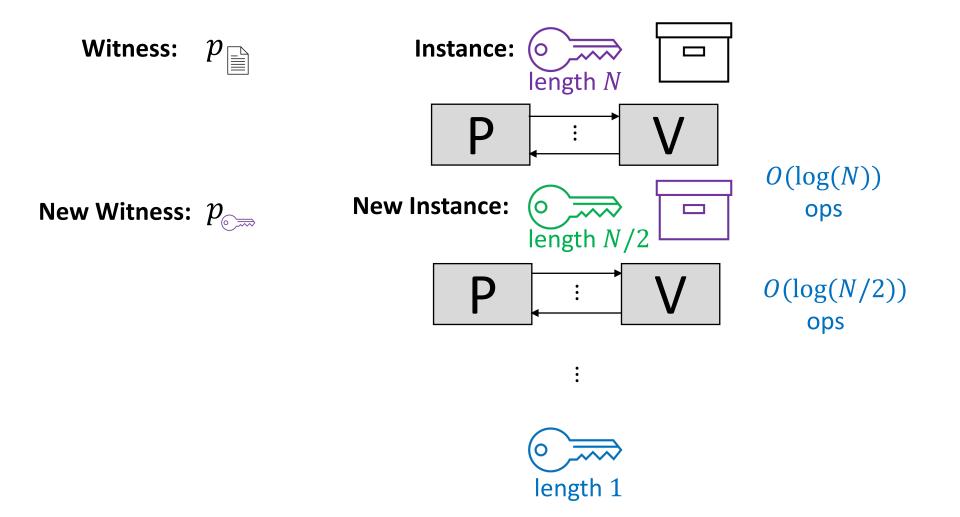
length 1

Succinct verification via delegation [Bootle Chiesa Sotiraki '23]

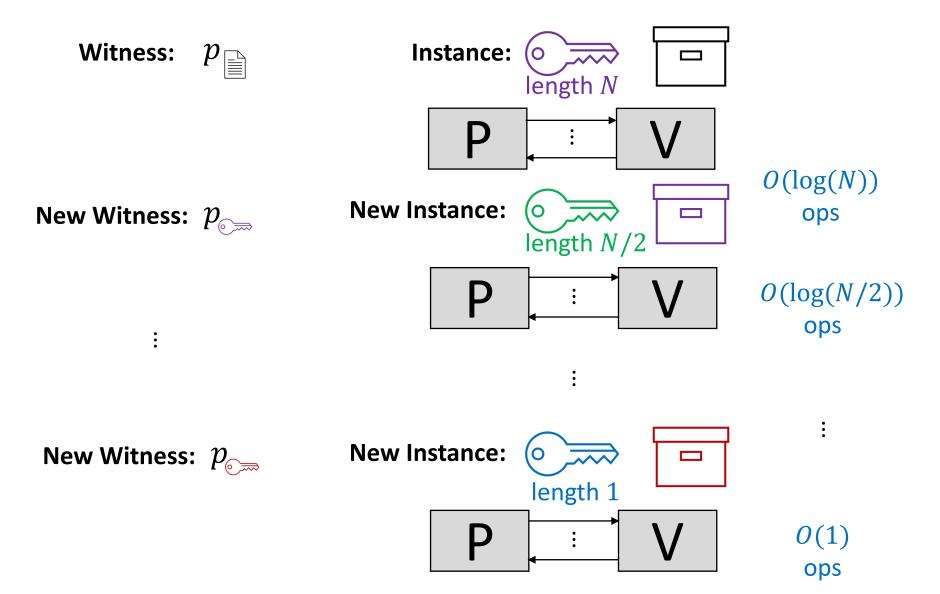


:

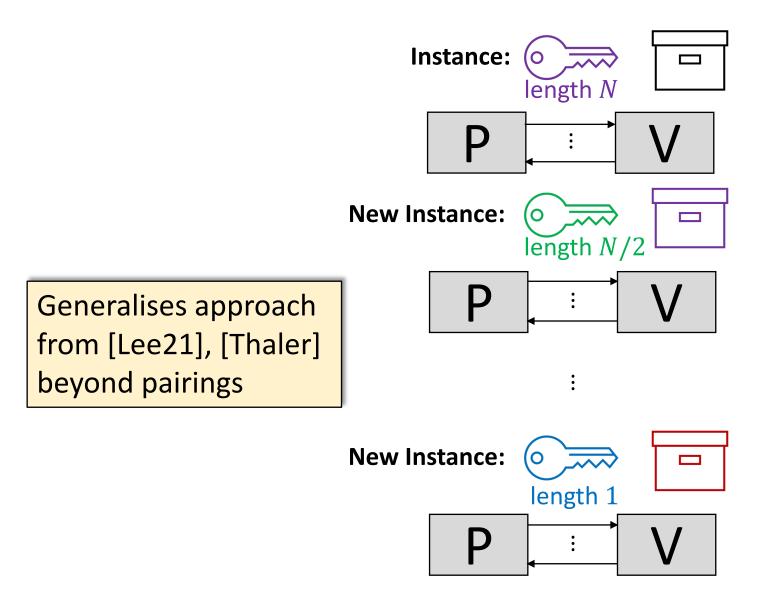
Succinct verification via delegation [Bootle Chiesa Sotiraki '23]



Succinct verification via delegation [Bootle Chiesa Sotiraki '23]



Succinct verification via delegation [Bootle Chiesa Sotiraki '23]



What kind of soundness? Knowledge soundness

What kind of soundness? Knowledge soundness

There exists an extractor that given a suitable tree of *accepting transcripts* for a commitment key ck and commitment C, finds an opening m such that C = Com(ck, m).

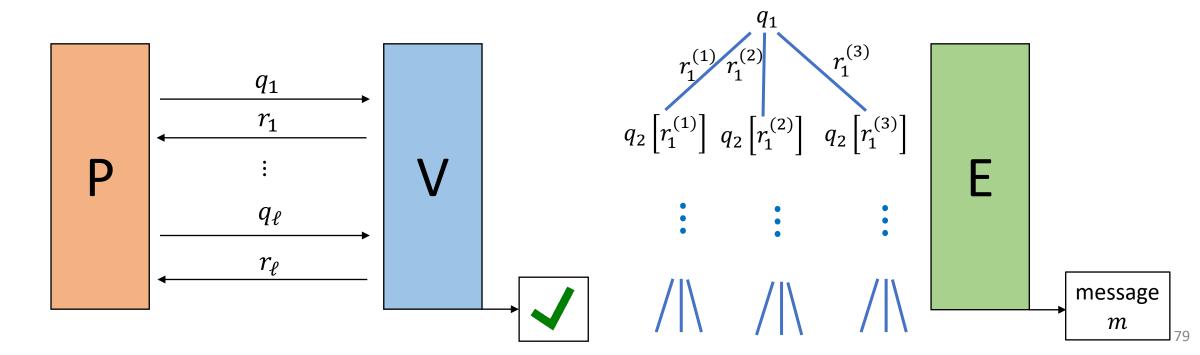
What kind of soundness? Knowledge soundness

There exists an extractor that given a suitable tree of *accepting transcripts* for a commitment key ck and commitment C, finds an opening m such that C = Com(ck, m).



What kind of soundness? Knowledge soundness

There exists an extractor that given a suitable tree of *accepting transcripts* for a commitment key ck and commitment C, finds an opening m such that C = Com(ck, m).



Everything so far extends to general \mathbb{F} -vector spaces, e.g., bilinear groups [BMMTV19].

Everything so far extends to general \mathbb{F} -vector spaces, e.g., bilinear groups [BMMTV19].

Pedersen commitments for bilinear groups: $\langle \underline{a}, \underline{G}_1 \rangle \in \mathbb{G}_T$ | | | \mathbb{G}_1 \mathbb{G}_2

Everything so far extends to general \mathbb{F} -vector spaces, e.g., bilinear groups [BMMTV19].

Pedersen commitments for bilinear groups: $\langle \underline{a}, \underline{G}_1 \rangle \in \mathbb{G}_T$ | |Lattices and groups of unknown order?

Everything so far extends to general \mathbb{F} -vector spaces, e.g., bilinear groups [BMMTV19].

Pedersen commitments for bilinear groups: $\langle \underline{a}, \underline{G}_1 \rangle \in \mathbb{G}_T$ | |Lattices and groups of unknown order?

Solution: an abstraction for mathematical structures where folding techniques can work

From groups to rings: bilinear modules

From groups to rings: bilinear modules

*R***-module** *M*: generalization of vector space over rings

From groups to rings: bilinear modules

*R***-module** *M*: generalization of vector space over rings

Assumption	Messages	Keys	Commitments	Ideal
BRA	small M_L	M_R	M _T	Ι
DLOG	\mathbb{F}_p	G	G	{0}
DPAIR[AFGHO10]	\mathbb{G}_1	\mathbb{G}_2	\mathbb{G}_T	{0}
UO [BFS20]	small $\mathbb Z$	G	G	$n\mathbb{Z}$ for suitable small n
RSIS [Ajtai94]	small R _q	R_q^d	R_q^d	$n\mathbb{Z}$ for suitable small n

Takeaways

- There are lattice-based transparent, succinct arguments
- Many commitment schemes are sumcheck friendly
- We can recast many different cryptographic settings as bilinear modules

Takeaways

- There are lattice-based transparent, succinct arguments
- Many commitment schemes are sumcheck friendly
- We can recast many different cryptographic settings as bilinear modules

Thanks!