
Sumcheck Arguments and
Lattice-based Succinct arguments

Jonathan Bootle (IBM Research – Zurich)
Alessandro Chiesa (EPFL)

Katerina Sotiraki (Yale University)
https://ia.cr/2021/333
https://ia.cr/2023/930

1
Slides by Jonathan Bootle

https://ia.cr/2021/333
https://ia.cr/2023/

Succinct arguments
10

Common
input

2

Succinct arguments

P V

10

Common
input

3

Succinct arguments

P V

10

Common
input

𝑥! = 4
𝑥" = 1
⋮

Witness

4

Succinct arguments

P V⋮

10

Common
input

𝑥! = 4
𝑥" = 1
⋮

Witness

5

Succinct arguments

P V⋮

10

Common
input

𝑥! = 4
𝑥" = 1
⋮

Witness

6

Succinct arguments

P V⋮

10

Common
input

𝑥! = 4
𝑥" = 1
⋮

Witness

Completeness: if the
witness is valid, the

verifier accepts

7

Succinct arguments

P V⋮

10

Common
input

𝑥! = 4
𝑥" = 1
⋮

Witness

Completeness: if the
witness is valid, the

verifier accepts

Soundness: if there is
no witness, the verifier
rejects

Knowledge soundness:
if the prover does not
know a witness, the
verifier rejects

8

Succinct arguments

P V⋮

10

Common
input

𝑥! = 4
𝑥" = 1
⋮

Witness

Completeness: if the
witness is valid, the

verifier accepts

Soundness: if there is
no witness, the verifier
rejects

Knowledge soundness:
if the prover does not
know a witness, the
verifier rejects

Succinctness: the messages are much
smaller than the witness

9

Building post-quantum succinct arguments

10

Building post-quantum succinct arguments

11

Hash-based

e.g. Aurora [BSCRSVW19]
Orion [XZS22]

Large proofs (~1MB)
Transparent

Building post-quantum succinct arguments

12

Pre-quantum, non-standard
assumptions

e.g. [Groth16]

Tiny proofs (~1KB)
Trusted setup

Hash-based

e.g. Aurora [BSCRSVW19]
Orion [XZS22]

Large proofs (~1MB)
Transparent

Building post-quantum succinct arguments

13

Pre-quantum, non-standard
assumptions

e.g. [Groth16]

Tiny proofs (~1KB)
Trusted setup

Pre-quantum, standard
assumptions

e.g. Dory [Lee21]

Small proofs (~20KB)
Transparent

Hash-based

e.g. Aurora [BSCRSVW19]
Orion [XZS22]

Large proofs (~1MB)
Transparent

Building post-quantum succinct arguments

14

Pre-quantum, non-standard
assumptions

e.g. [Groth16]

Tiny proofs (~1KB)
Trusted setup

Pre-quantum, standard
assumptions

e.g. Dory [Lee21]

Small proofs (~20KB)
Transparent

Lattice-based, non-standard
assumptions

e.g. [ACLMT22],
[FLV23],[CLM23]

Large proofs (~1MB)***
Trusted setup

Hash-based

e.g. Aurora [BSCRSVW19]
Orion [XZS22]

Large proofs (~1MB)
Transparent

Building post-quantum succinct arguments

15

Pre-quantum, non-standard
assumptions

e.g. [Groth16]

Tiny proofs (~1KB)
Trusted setup

Pre-quantum, standard
assumptions

e.g. Dory [Lee21]

Small proofs (~20KB)
Transparent

Lattice-based, non-standard
assumptions

e.g. [ACLMT22],
[FLV23],[CLM23]

Large proofs (~1MB)***
Trusted setup

Hash-based

e.g. Aurora [BSCRSVW19]
Orion [XZS22]

Large proofs (~1MB)
Transparent

Lattice-based, standard
assumptions

Small proofs
Transparent

Building post-quantum succinct arguments

16

Pre-quantum, non-standard
assumptions

e.g. [Groth16]

Tiny proofs (~1KB)
Trusted setup

Pre-quantum, standard
assumptions

e.g. Dory [Lee21]

Small proofs (~20KB)
Transparent

Lattice-based, non-standard
assumptions

e.g. [ACLMT22],
[FLV23],[CLM23]

Large proofs (~1MB)***
Trusted setup

Hash-based

e.g. Aurora [BSCRSVW19]
Orion [XZS22]

Large proofs (~1MB)
Transparent

Without succinct verification

e.g. Labrador [BS23]

Quite small proofs (~50KB)
Transparent

Lattice-based, standard
assumptions

Small proofs
Transparent

Building post-quantum succinct arguments

17

Pre-quantum, non-standard
assumptions

e.g. [Groth16]

Tiny proofs (~1KB)
Trusted setup

Pre-quantum, standard
assumptions

e.g. Dory [Lee21]

Small proofs (~20KB)
Transparent

Lattice-based, non-standard
assumptions

e.g. [ACLMT22],
[FLV23],[CLM23]

Large proofs (~1MB)***
Trusted setup

Hash-based

e.g. Aurora [BSCRSVW19]
Orion [XZS22]

Large proofs (~1MB)
Transparent

Without succinct verification

e.g. Labrador [BS23]

Quite small proofs (~50KB)
Transparent

Lattice-based, standard
assumptions

Small proofs
Transparent

Homomorphic cryptography

Question: can we construct
transparent, succinct arguments

from standard lattice assumptions?

18

The sumcheck protocol [LFKN92]

19

The sumcheck protocol [LFKN92]
Given a polynomial 𝑝(𝑋!, … , 𝑋ℓ) over a field 𝔽 and a value 𝑢 ∈ 𝔽,

prove that ∑#∈%ℓ 𝑝(𝜔!, … , 𝜔ℓ) = 𝑢

20

The sumcheck protocol [LFKN92]

P V

Given a polynomial 𝑝(𝑋!, … , 𝑋ℓ) over a field 𝔽 and a value 𝑢 ∈ 𝔽,
prove that ∑#∈%ℓ 𝑝(𝜔!, … , 𝜔ℓ) = 𝑢

21

The sumcheck protocol [LFKN92]

P V

Given a polynomial 𝑝(𝑋!, … , 𝑋ℓ) over a field 𝔽 and a value 𝑢 ∈ 𝔽,
prove that ∑#∈%ℓ 𝑝(𝜔!, … , 𝜔ℓ) = 𝑢

𝑞! ∈ 𝔽[𝑋!]

⋮
Computes polynomials
	𝑞" 𝑋" =
∑#∈%ℓ"# 𝑝(𝑟&, . . , 𝑟"'&, 𝑋", 𝜔"(&, . . , 𝜔ℓ)

𝑟! ← 𝔽

𝑞ℓ ∈ 𝔽[𝑋ℓ]

𝑟ℓ ← 𝔽

22

The sumcheck protocol [LFKN92]

P V

Given a polynomial 𝑝(𝑋!, … , 𝑋ℓ) over a field 𝔽 and a value 𝑢 ∈ 𝔽,
prove that ∑#∈%ℓ 𝑝(𝜔!, … , 𝜔ℓ) = 𝑢

𝑞! ∈ 𝔽[𝑋!] Checks that
 ∑#)∈% 𝑞! 𝜔! = 𝑢
 ∑#*∈% 𝑞& 𝜔& = 𝑞!(𝑟!)

⋮
 ∑#ℓ∈% 𝑞ℓ 𝜔ℓ = 𝑞ℓ'!(𝑟ℓ'!)

⋮
Computes polynomials
	𝑞" 𝑋" =
∑#∈%ℓ"# 𝑝(𝑟&, . . , 𝑟"'&, 𝑋", 𝜔"(&, . . , 𝜔ℓ)

𝑟! ← 𝔽

𝑞ℓ ∈ 𝔽[𝑋ℓ]

𝑟ℓ ← 𝔽

23

The sumcheck protocol [LFKN92]

P V

Given a polynomial 𝑝(𝑋!, … , 𝑋ℓ) over a field 𝔽 and a value 𝑢 ∈ 𝔽,
prove that ∑#∈%ℓ 𝑝(𝜔!, … , 𝜔ℓ) = 𝑢

𝑞! ∈ 𝔽[𝑋!] Checks that
 ∑#)∈% 𝑞! 𝜔! = 𝑢
 ∑#*∈% 𝑞& 𝜔& = 𝑞!(𝑟!)

⋮
 ∑#ℓ∈% 𝑞ℓ 𝜔ℓ = 𝑞ℓ'!(𝑟ℓ'!)

⋮
Computes polynomials
	𝑞" 𝑋" =
∑#∈%ℓ"# 𝑝(𝑟&, . . , 𝑟"'&, 𝑋", 𝜔"(&, . . , 𝜔ℓ)

𝑟! ← 𝔽

𝑞ℓ ∈ 𝔽[𝑋ℓ]

𝑟ℓ ← 𝔽

Evaluates 𝑝 to check that
𝑝(𝑟!, … , 𝑟ℓ) = 𝑞ℓ(𝑟ℓ)

24

The sumcheck protocol [LFKN92]

P V

Given a polynomial 𝑝(𝑋!, … , 𝑋ℓ) over a field 𝔽 and a value 𝑢 ∈ 𝔽,
prove that ∑#∈%ℓ 𝑝(𝜔!, … , 𝜔ℓ) = 𝑢

𝑞! ∈ 𝔽[𝑋!] Checks that
 ∑#)∈% 𝑞! 𝜔! = 𝑢
 ∑#*∈% 𝑞& 𝜔& = 𝑞!(𝑟!)

⋮
 ∑#ℓ∈% 𝑞ℓ 𝜔ℓ = 𝑞ℓ'!(𝑟ℓ'!)

⋮
Computes polynomials
	𝑞" 𝑋" =
∑#∈%ℓ"# 𝑝(𝑟&, . . , 𝑟"'&, 𝑋", 𝜔"(&, . . , 𝜔ℓ)

Soundness: If ∑#∈%ℓ 𝑝(𝜔!, … , 𝜔ℓ) ≠ 𝑢 then V accepts with probability at most ℓ⋅)*+(-)
|𝔽|

.

𝑟! ← 𝔽

𝑞ℓ ∈ 𝔽[𝑋ℓ]

𝑟ℓ ← 𝔽

Evaluates 𝑝 to check that
𝑝(𝑟!, … , 𝑟ℓ) = 𝑞ℓ(𝑟ℓ)

25

The sumcheck protocol is everywhere!

Sumcheck
protocol

26

The sumcheck protocol is everywhere!

Sumcheck
protocolProbabilistic proofs

[BFL91,BFLS91,GKR08]

27

The sumcheck protocol is everywhere!

Sumcheck
protocolProbabilistic proofs

[BFL91,BFLS91,GKR08]

Sumcheck-based
succinct arguments

[Thaler13]

[CMT13], [VSBW13],
[W+17], [ZGKPP17],

[WTSTW18],
[XZZPS19], [Set20]

28

The sumcheck protocol is everywhere!

Sumcheck
protocolProbabilistic proofs

[BFL91,BFLS91,GKR08]

Sumcheck-based
succinct arguments

[Thaler13]

[CMT13], [VSBW13],
[W+17], [ZGKPP17],

[WTSTW18],
[XZZPS19], [Set20]

Univariate-sumcheck-
based arguments

[BCRSVS19]

[BCGGRS19], [ZXZS20],
[CHMVW20], [COS20],
[CFQR20], [BFHVXZ20]

29

The sumcheck protocol is everywhere!

Sumcheck
protocolProbabilistic proofs

[BFL91,BFLS91,GKR08]

Sumcheck-based
succinct arguments

[Thaler13]

[CMT13], [VSBW13],
[W+17], [ZGKPP17],

[WTSTW18],
[XZZPS19], [Set20]

Univariate-sumcheck-
based arguments

[BCRSVS19]

[BCGGRS19], [ZXZS20],
[CHMVW20], [COS20],
[CFQR20], [BFHVXZ20]

Sumchecks for
tensor codes

[Meir13]

[RR20],
[BCG20],
[BCL20]

30

The sumcheck protocol is everywhere!

Sumcheck
protocolProbabilistic proofs

[BFL91,BFLS91,GKR08]

Sumcheck-based
succinct arguments

[Thaler13]

[CMT13], [VSBW13],
[W+17], [ZGKPP17],

[WTSTW18],
[XZZPS19], [Set20]

Univariate-sumcheck-
based arguments

[BCRSVS19]

[BCGGRS19], [ZXZS20],
[CHMVW20], [COS20],
[CFQR20], [BFHVXZ20]

Sumchecks for
tensor codes

[Meir13]

[RR20],
[BCG20],
[BCL20]

https://zkproof.org/2020/03/16/sum-checkprotocol/

31

https://zkproof.org/2020/03/16/sum-checkprotocol/

Folding technique based on homomorphic enc:
a separate body of work?

Folding
[BCCGP16]

32

Folding technique based on homomorphic enc:
a separate body of work?

Discrete-log arguments
[BBBPWM18], [PLS19],

[HKR19], [BHRRS20]

Folding
[BCCGP16]

33

Pairing-group
arguments

[LMR19], [ZGKPP17],
[XZZPS19]

Folding technique based on homomorphic enc:
a separate body of work?

Discrete-log arguments
[BBBPWM18], [PLS19],

[HKR19], [BHRRS20]

Folding
[BCCGP16]

34

Pairing-group
arguments

[LMR19], [ZGKPP17],
[XZZPS19]

Folding technique based on homomorphic enc:
a separate body of work?

Discrete-log arguments
[BBBPWM18], [PLS19],

[HKR19], [BHRRS20]

Unknown-order-group
arguments

[BFS20],
[BHRRS21]

Folding
[BCCGP16]

35

Pairing-group
arguments

[LMR19], [ZGKPP17],
[XZZPS19]

Folding technique based on homomorphic enc:
a separate body of work?

Discrete-log arguments
[BBBPWM18], [PLS19],

[HKR19], [BHRRS20]

Unknown-order-group
arguments

[BFS20],
[BHRRS21]

Lattice
arguments

[BLNS20],
[ACK21], [LA20]

Folding
[BCCGP16]

36

Pairing-group
arguments

[LMR19], [ZGKPP17],
[XZZPS19]

Folding technique based on homomorphic enc:
a separate body of work?

Discrete-log arguments
[BBBPWM18], [PLS19],

[HKR19], [BHRRS20]

Unknown-order-group
arguments

[BFS20],
[BHRRS21]

Lattice
arguments

[BLNS20],
[ACK21], [LA20]

Some unifying abstractions: [BMMTV19,AC20,BDFG21]

Folding
[BCCGP16]

37

Pairing-group
arguments

[LMR19], [ZGKPP17],
[XZZPS19]

Folding technique based on homomorphic enc:
a separate body of work?

Discrete-log arguments
[BBBPWM18], [PLS19],

[HKR19], [BHRRS20]

Unknown-order-group
arguments

[BFS20],
[BHRRS21]

Lattice
arguments

[BLNS20],
[ACK21], [LA20]

Some unifying abstractions: [BMMTV19,AC20,BDFG21]

Folding
[BCCGP16]

https://www.coindesk.com/aim-fire-bulletproofs-breakthrough-privacy-blockchains

[BBBPWM18] implemented in Rust, Haskell, Javascript, and deployed by
Blockstream, and in Monero, Mimblewimble and more…

38

https://www.coindesk.com/aim-fire-bulletproofs-breakthrough-privacy-blockchains

Results

39

From two bodies of work…

Sumchecks and
commitment schemes

[VSBW13], [Wah+17], [ZGKPP17],
[WTSTW18], [XZZPS19],

[BCRSVS19], [BCGGRS19],
[ZXZS20], [CHMVW20], [COS20],
[CFQR20], [BFHVXZ20], [Set20]

[BCCGP16], [BBBPWM18],
[LMR19], [BMMTV19], [PLS19],
[HKR19], [BHRRS20], [ACR20],

[ACF20], [BFS20], [BLNS20],
[AC20], [BDFG21], [BHRRS21],

[LA21], [ACK21]

Folding techniques

Sumcheck
protocol

40

From two bodies of work……to a unified perspective

Sumchecks and
commitment schemes

[VSBW13], [Wah+17], [ZGKPP17],
[WTSTW18], [XZZPS19],

[BCRSVS19], [BCGGRS19],
[ZXZS20], [CHMVW20], [COS20],
[CFQR20], [BFHVXZ20], [Set20]

Sumcheck arguments
(this work)

[BCCGP16], [BBBPWM18],
[LMR19], [BMMTV19], [PLS19],
[HKR19], [BHRRS20], [ACR20],

[ACF20], [BFS20], [BLNS20],
[AC20], [BDFG21], [BHRRS21],

[LA21], [ACK21]

Folding techniques

Sumcheck
protocol

41

From two bodies of work……to a unified perspective

Sumchecks and
commitment schemes

[VSBW13], [Wah+17], [ZGKPP17],
[WTSTW18], [XZZPS19],

[BCRSVS19], [BCGGRS19],
[ZXZS20], [CHMVW20], [COS20],
[CFQR20], [BFHVXZ20], [Set20]

Sumcheck arguments
(this work)

[BCCGP16], [BBBPWM18],
[LMR19], [BMMTV19], [PLS19],
[HKR19], [BHRRS20], [ACR20],

[ACF20], [BFS20], [BLNS20],
[AC20], [BDFG21], [BHRRS21],

[LA21], [ACK21]

Folding techniques

Sumcheck
protocol

42

Lattice-based
succinct argument

General goal:
succinct arguments for commitment openings

P V⋮

43

General goal:
succinct arguments for commitment openings

P V

Common input:
• commitment 𝐶
• commitment key 𝑐𝑘

⋮

44

General goal:
succinct arguments for commitment openings

P V

Common input:
• commitment 𝐶
• commitment key 𝑐𝑘

⋮

Claim: ∃	𝑚 such that
	𝐶 = Com 𝑐𝑘,𝑚

45

General goal:
succinct arguments for commitment openings

P V

Common input:
• commitment 𝐶
• commitment key 𝑐𝑘

Succinctness goal:
communication ≪ |𝑚|

⋮

Claim: ∃	𝑚 such that
	𝐶 = Com 𝑐𝑘,𝑚

46

General goal:
succinct arguments for commitment openings

P V

Common input:
• commitment 𝐶
• commitment key 𝑐𝑘

Succinctness goal:
communication ≪ |𝑚|

⋮

Focus: commitments
with special structure

Claim: ∃	𝑚 such that
	𝐶 = Com 𝑐𝑘,𝑚

47

A new notion :
sumcheck-friendly commitments
Definition: A commitment scheme CM is sumcheck friendly if

Com 𝑐𝑘,𝑚 = *
:!,…,:ℓ∈;

𝑓(𝑝< 𝜔=, … , 𝜔ℓ , 𝑝?@ 𝜔=, … , 𝜔ℓ)

A new notion :
sumcheck-friendly commitments
Definition: A commitment scheme CM is sumcheck friendly if

Com 𝑐𝑘,𝑚 = *
:!,…,:ℓ∈;

𝑓(𝑝< 𝜔=, … , 𝜔ℓ , 𝑝?@ 𝜔=, … , 𝜔ℓ)

evaluation
points from

𝐻 ⊆ 𝑅, 𝑅 a ring

A new notion :
sumcheck-friendly commitments
Definition: A commitment scheme CM is sumcheck friendly if

Com 𝑐𝑘,𝑚 = *
:!,…,:ℓ∈;

𝑓(𝑝< 𝜔=, … , 𝜔ℓ , 𝑝?@ 𝜔=, … , 𝜔ℓ)

evaluation
points from

𝐻 ⊆ 𝑅, 𝑅 a ring

commitment
space ℂ is an
𝑅-module

A new notion :
sumcheck-friendly commitments
Definition: A commitment scheme CM is sumcheck friendly if

Com 𝑐𝑘,𝑚 = *
:!,…,:ℓ∈;

𝑓(𝑝< 𝜔=, … , 𝜔ℓ , 𝑝?@ 𝜔=, … , 𝜔ℓ)

message
polynomial

in 𝕄[𝑋!, … , 𝑋ℓ],
𝕄 an 𝑅-module

evaluation
points from

𝐻 ⊆ 𝑅, 𝑅 a ring

commitment
space ℂ is an
𝑅-module

A new notion :
sumcheck-friendly commitments
Definition: A commitment scheme CM is sumcheck friendly if

Com 𝑐𝑘,𝑚 = *
:!,…,:ℓ∈;

𝑓(𝑝< 𝜔=, … , 𝜔ℓ , 𝑝?@ 𝜔=, … , 𝜔ℓ)

message
polynomial

in 𝕄[𝑋!, … , 𝑋ℓ],
𝕄 an 𝑅-module

evaluation
points from

𝐻 ⊆ 𝑅, 𝑅 a ring

key polynomial
in 𝕂[𝑋!, … , 𝑋ℓ],
𝕂 an 𝑅-module

commitment
space ℂ is an
𝑅-module

A new notion :
sumcheck-friendly commitments
Definition: A commitment scheme CM is sumcheck friendly if

Com 𝑐𝑘,𝑚 = *
:!,…,:ℓ∈;

𝑓(𝑝< 𝜔=, … , 𝜔ℓ , 𝑝?@ 𝜔=, … , 𝜔ℓ)

message
polynomial

in 𝕄[𝑋!, … , 𝑋ℓ],
𝕄 an 𝑅-module

evaluation
points from

𝐻 ⊆ 𝑅, 𝑅 a ring

key polynomial
in 𝕂[𝑋!, … , 𝑋ℓ],
𝕂 an 𝑅-module

combiner function 𝑓 ∶ 	𝕄×𝕂 → ℂ

commitment
space ℂ is an
𝑅-module

Main result: sumcheck arguments

Theorem 1:
If CM is sumcheck-friendly and invertible. The sumcheck protocol
applied to

(with one extra verifier check) is a succinct argument of knowledge
with communication ℓ ⋅ deg 𝑝

𝑝 𝑋=, … , 𝑋ℓ = 𝑓 𝑝< 𝑋=, … , 𝑋ℓ , 𝑝?@ 𝑋=, … , 𝑋ℓ ∈ ℂ[𝑋=, … , 𝑋ℓ]

54

Application: succinct arguments for NP

[VSBW13], [Wah+17], [ZGKPP17],
[WTSTW18], [XZZPS19],

[BCRSVS19], [BCGGRS19],
[ZXZS20], [CHMVW20], [COS20],
[CFQR20], [BFHVXZ20], [Set20]

[BCCGP16], [BBBPWM18],
[LMR19], [BMMTV19], [PLS19],
[HKR19], [BHRRS20], [ACR20],

[ACF20], [BFS20], [BLNS20],
[AC20], [BDFG21], [BHRRS21],

[LA21], [ACK21]

Sumcheck
protocol

Sumchecks and
commitment schemes

Folding techniques

Sumcheck arguments
(this work)

55

Application: succinct arguments for NP

[VSBW13], [Wah+17], [ZGKPP17],
[WTSTW18], [XZZPS19],

[BCRSVS19], [BCGGRS19],
[ZXZS20], [CHMVW20], [COS20],
[CFQR20], [BFHVXZ20], [Set20]

[BCCGP16], [BBBPWM18],
[LMR19], [BMMTV19], [PLS19],
[HKR19], [BHRRS20], [ACR20],

[ACF20], [BFS20], [BLNS20],
[AC20], [BDFG21], [BHRRS21],

[LA21], [ACK21]

Step 1: reduce NP
statements to

scalar products

Sumcheck
protocol

Sumchecks and
commitment schemes

Folding techniques

Sumcheck arguments
(this work)

56

Application: succinct arguments for NP

[VSBW13], [Wah+17], [ZGKPP17],
[WTSTW18], [XZZPS19],

[BCRSVS19], [BCGGRS19],
[ZXZS20], [CHMVW20], [COS20],
[CFQR20], [BFHVXZ20], [Set20]

[BCCGP16], [BBBPWM18],
[LMR19], [BMMTV19], [PLS19],
[HKR19], [BHRRS20], [ACR20],

[ACF20], [BFS20], [BLNS20],
[AC20], [BDFG21], [BHRRS21],

[LA21], [ACK21]

Step 1: reduce NP
statements to

scalar products

Step 2: build
succinct argument
for scalar-product

commitments

Sumcheck
protocol

Sumchecks and
commitment schemes

Folding techniques

Sumcheck arguments
(this work)

57

Application: succinct arguments for NP

[VSBW13], [Wah+17], [ZGKPP17],
[WTSTW18], [XZZPS19],

[BCRSVS19], [BCGGRS19],
[ZXZS20], [CHMVW20], [COS20],
[CFQR20], [BFHVXZ20], [Set20]

[BCCGP16], [BBBPWM18],
[LMR19], [BMMTV19], [PLS19],
[HKR19], [BHRRS20], [ACR20],

[ACF20], [BFS20], [BLNS20],
[AC20], [BDFG21], [BHRRS21],

[LA21], [ACK21]

SA for scalar-product
commitments

Step 1: reduce NP
statements to

scalar products

Step 2: build
succinct argument
for scalar-product

commitments

Sumcheck
protocol

Sumchecks and
commitment schemes

Folding techniques

Sumcheck arguments
(this work)

58

Lattice-based succinct arguments for NP

Corollary: Assuming SIS is hard over 𝑅L ≔ ℤL[𝑋]/ 𝑋M + 1 and 𝑝 ≪ 𝑞
primes, there is a zero-knowledge succinct argument of knowledge for NP
with

R1CS Ring Prover time Verifier time Proof size
𝑅0 𝑂 𝑛 	ops in 𝑅0, 𝑅1 𝑂 𝑛 	ops in 𝑅0, 𝑅1 𝑂 log 𝑛 elems of 𝑅1

59

[Bootle Chiesa Sotiraki ‘21]

Lattice-based succinct arguments for NP

Corollary: Assuming SIS is hard over 𝑅L ≔ ℤL[𝑋]/ 𝑋M + 1 and 𝑝 ≪ 𝑞
primes, there is a zero-knowledge succinct argument of knowledge for NP
with

R1CS Ring Prover time Verifier time Proof size
𝑅0 𝑂 𝑛 	ops in 𝑅0, 𝑅1 𝑂 𝑛 	ops in 𝑅0, 𝑅1 𝑂 log 𝑛 elems of 𝑅1

Concurrent work:
• [LA21] gives impossibility results and improvements for lattice POKs
• [ACK21] gives lattice-based succinct arguments for NP

60

[Bootle Chiesa Sotiraki ‘21]

Lattice-based succinct arguments for NP

Corollary: Assuming SIS is hard over 𝑅L ≔ ℤL[𝑋]/ 𝑋M + 1 and 𝑝 ≪ 𝑞
primes, there is a zero-knowledge succinct argument of knowledge for NP
with

R1CS Ring Prover time Verifier time Proof size
𝑅0 𝑂 𝑛 	ops in 𝑅0, 𝑅1 𝑂 𝑛 	ops in 𝑅0, 𝑅1 𝑂 log 𝑛 elems of 𝑅1

Concurrent work:
• [LA21] gives impossibility results and improvements for lattice POKs
• [ACK21] gives lattice-based succinct arguments for NP

61

[Bootle Chiesa Sotiraki ‘21]

Lattice-based succinct arguments for NP

Corollary: Assuming SIS is hard over 𝑅L ≔ ℤL[𝑋]/ 𝑋M + 1 and 𝑝 ≪ 𝑞
primes, there is a zero-knowledge succinct argument of knowledge for NP
with preprocessing such that

Concurrent work:
• [LA21] gives impossibility results and improvements for lattice POKs
• [ACK21] gives lattice-based succinct arguments for NP

62

[Bootle Chiesa Sotiraki ‘23]

R1CS Ring Prover time Verifier time Proof size
𝑅0 𝑂 𝑛 	ops in 𝑅0, 𝑅1 polylog 𝑛 ops in 𝑅0, 𝑅1 polylog 𝑛 elems of 𝑅1

Techniques

63

64

Sumcheck argument for Pedersen
Common input:
• commitment 𝐶 ∈ 𝔾
• key 3𝐺 ∈ 𝔾2	
Claim: ∃6𝑎 ∈ 𝔽2 s.t. 𝐶 = 6𝑎, 3𝐺

65

Sumcheck argument for Pedersen
Common input:
• commitment 𝐶 ∈ 𝔾
• key 3𝐺 ∈ 𝔾2	
Claim: ∃6𝑎 ∈ 𝔽2 s.t. 𝐶 = 6𝑎, 3𝐺

VP

Opening:
6𝑎 ∈ 𝔽2

66

sumcheck protocol for
3

! ∈ #$,$!"#(%)

𝑝& 5𝜔 𝑝'(5𝜔 = 𝑛	𝐶

Sumcheck argument for Pedersen
Common input:
• commitment 𝐶 ∈ 𝔾
• key 3𝐺 ∈ 𝔾2	
Claim: ∃6𝑎 ∈ 𝔽2 s.t. 𝐶 = 6𝑎, 3𝐺

VP

Opening:
6𝑎 ∈ 𝔽2

67

sumcheck protocol for
3

! ∈ #$,$!"#(%)

𝑝& 5𝜔 𝑝'(5𝜔 = 𝑛	𝐶

Sumcheck argument for Pedersen
Common input:
• commitment 𝐶 ∈ 𝔾
• key 3𝐺 ∈ 𝔾2	
Claim: ∃6𝑎 ∈ 𝔽2 s.t. 𝐶 = 6𝑎, 3𝐺

V𝑝58 6𝑟
P

Opening:
6𝑎 ∈ 𝔽2

68

sumcheck protocol for
3

! ∈ #$,$!"#(%)

𝑝& 5𝜔 𝑝'(5𝜔 = 𝑛	𝐶

Sumcheck argument for Pedersen
Common input:
• commitment 𝐶 ∈ 𝔾
• key 3𝐺 ∈ 𝔾2	
Claim: ∃6𝑎 ∈ 𝔽2 s.t. 𝐶 = 6𝑎, 3𝐺

V𝑝58 6𝑟
P

Opening:
6𝑎 ∈ 𝔽2

Consistency check:
𝑝& 𝑟 𝑝(𝑟 = 𝑞)*+ , (𝑟)*+ ,)?

69

sumcheck protocol for
3

! ∈ #$,$!"#(%)

𝑝& 5𝜔 𝑝'(5𝜔 = 𝑛	𝐶

Sumcheck argument for Pedersen
Common input:
• commitment 𝐶 ∈ 𝔾
• key 3𝐺 ∈ 𝔾2	
Claim: ∃6𝑎 ∈ 𝔽2 s.t. 𝐶 = 6𝑎, 3𝐺

V𝑝58 6𝑟
P

Opening:
6𝑎 ∈ 𝔽2

Communication: O(log 𝑛)
Verifier computation: O 𝑛 	

Consistency check:
𝑝& 𝑟 𝑝(𝑟 = 𝑞)*+ , (𝑟)*+ ,)?

70

sumcheck protocol for
3

! ∈ #$,$!"#(%)

𝑝& 5𝜔 𝑝'(5𝜔 = 𝑛	𝐶

Sumcheck argument for Pedersen
Common input:
• commitment 𝐶 ∈ 𝔾
• key 3𝐺 ∈ 𝔾2	
Claim: ∃6𝑎 ∈ 𝔽2 s.t. 𝐶 = 6𝑎, 3𝐺

V𝑝58 6𝑟
P

Opening:
6𝑎 ∈ 𝔽2

Communication: O(log 𝑛)
Verifier computation: O 𝑛 	

Consistency check:
𝑝& 𝑟 𝑝(𝑟 = 𝑞)*+ , (𝑟)*+ ,)?

Succinct verification via delegation

71

length 𝑁

length 𝑁/2

length 1

⋮

[Bootle Chiesa Sotiraki ‘23]

Succinct verification via delegation

72

Instance:Witness: 𝑝

𝑂(log(𝑁))
ops

length 𝑁

length 𝑁/2

P V⋮

length 1

⋮

[Bootle Chiesa Sotiraki ‘23]

Succinct verification via delegation

73

Instance:Witness: 𝑝

𝑂(log(𝑁))
ops

length 𝑁

New Instance:New Witness: 𝑝

𝑂(log(𝑁/2))
ops

length 𝑁/2

P V⋮

P V⋮

length 1

⋮

[Bootle Chiesa Sotiraki ‘23]

Succinct verification via delegation

74

Instance:Witness: 𝑝

𝑂(log(𝑁))
ops

length 𝑁

New Instance:New Witness: 𝑝

𝑂(log(𝑁/2))
ops

length 𝑁/2

P V⋮

P V⋮

New Instance:

𝑂(1)
ops

length 1

P V⋮

⋮

New Witness: 𝑝

⋮

⋮

[Bootle Chiesa Sotiraki ‘23]

Succinct verification via delegation

75

Instance:
length 𝑁

New Instance:
length 𝑁/2

P V⋮

P V⋮

New Instance:
length 1

P V⋮

⋮
Generalises approach
from [Lee21], [Thaler]
beyond pairings ⋮

[Bootle Chiesa Sotiraki ‘23]

What kind of soundness? Knowledge soundness

Soundness

76

What kind of soundness? Knowledge soundness

There exists an extractor that given a suitable tree of accepting transcripts for a
commitment key 𝑐𝑘 and commitment 𝐶, finds an opening 𝑚 such that 𝐶 = Com(𝑐𝑘,𝑚).

Soundness

77

What kind of soundness? Knowledge soundness

There exists an extractor that given a suitable tree of accepting transcripts for a
commitment key 𝑐𝑘 and commitment 𝐶, finds an opening 𝑚 such that 𝐶 = Com(𝑐𝑘,𝑚).

Soundness

P V

𝑞!

⋮

𝑟!

𝑞ℓ

𝑟ℓ

78

What kind of soundness? Knowledge soundness

There exists an extractor that given a suitable tree of accepting transcripts for a
commitment key 𝑐𝑘 and commitment 𝐶, finds an opening 𝑚 such that 𝐶 = Com(𝑐𝑘,𝑚).

Soundness

⋮ ⋮ ⋮

𝑟$
($) 𝑟$

(/) 𝑟$
(0)

𝑞$

𝑞/ 𝑟$
($) 𝑞/ 𝑟$

(/) 𝑞/ 𝑟$
(0)

P V

𝑞!

⋮

𝑟!

𝑞ℓ

𝑟ℓ

E

message
𝑚

79

From groups to rings

80

From groups to rings

Everything so far extends to general 𝔽-vector spaces, e.g., bilinear groups [BMMTV19].

81

From groups to rings

Everything so far extends to general 𝔽-vector spaces, e.g., bilinear groups [BMMTV19].

Pedersen commitments for bilinear groups: 3𝒂, 3𝑮𝟏 ∈ 𝔾𝑻

𝔾! 𝔾"

82

From groups to rings

Everything so far extends to general 𝔽-vector spaces, e.g., bilinear groups [BMMTV19].

Pedersen commitments for bilinear groups: 3𝒂, 3𝑮𝟏 ∈ 𝔾𝑻

𝔾! 𝔾"Lattices and groups of unknown order?

83

From groups to rings

Solution: an abstraction for mathematical structures where folding techniques can work

Everything so far extends to general 𝔽-vector spaces, e.g., bilinear groups [BMMTV19].

Pedersen commitments for bilinear groups: 3𝒂, 3𝑮𝟏 ∈ 𝔾𝑻

𝔾! 𝔾"Lattices and groups of unknown order?

84

From groups to rings:
bilinear modules

85

From groups to rings:
bilinear modules

𝑹-module 𝑴: generalization of vector space over rings

86

From groups to rings:
bilinear modules

𝑹-module 𝑴: generalization of vector space over rings

87

Assumption Messages Keys Commitments Ideal
BRA small 𝑀@ 𝑀A 𝑀B 𝐼

DLOG 𝔽0 𝔾 𝔾 {0}
DPAIR[AFGHO10] 𝔾! 𝔾" 𝔾B {0}

UO [BFS20] small ℤ 𝔾 𝔾 𝑛ℤ for suitable small 𝑛
RSIS [Ajtai94] small 𝑅1 𝑅1C 𝑅1C 𝑛ℤ for suitable small 𝑛

Takeaways

• There are lattice-based transparent,
succinct arguments

• Many commitment schemes are
sumcheck friendly

• We can recast many different
cryptographic settings as bilinear modules

88

Takeaways

• There are lattice-based transparent,
succinct arguments

• Many commitment schemes are
sumcheck friendly

• We can recast many different
cryptographic settings as bilinear modules

89

Thanks!

