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⋮
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Completeness: if the 
witness is valid, the 
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Soundness: if there is 
no witness, the verifier 
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Knowledge soundness: 
if the prover does not 
know a witness, the 
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smaller than the witness
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https://www.coindesk.com/aim-fire-bulletproofs-breakthrough-privacy-blockchains

[BBBPWM18] implemented in Rust, Haskell, Javascript, and deployed by 
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38

https://www.coindesk.com/aim-fire-bulletproofs-breakthrough-privacy-blockchains


Results

39



From two bodies of work…

Sumchecks and
commitment schemes

[VSBW13], [Wah+17], [ZGKPP17], 
[WTSTW18], [XZZPS19], 

[BCRSVS19], [BCGGRS19], 
[ZXZS20], [CHMVW20], [COS20], 
[CFQR20], [BFHVXZ20], [Set20]

[BCCGP16], [BBBPWM18], 
[LMR19], [BMMTV19], [PLS19], 
[HKR19], [BHRRS20], [ACR20], 

[ACF20], [BFS20], [BLNS20], 
[AC20], [BDFG21], [BHRRS21], 

[LA21], [ACK21]

Folding techniques

Sumcheck 
protocol

40



From two bodies of work……to a unified perspective

Sumchecks and
commitment schemes

[VSBW13], [Wah+17], [ZGKPP17], 
[WTSTW18], [XZZPS19], 

[BCRSVS19], [BCGGRS19], 
[ZXZS20], [CHMVW20], [COS20], 
[CFQR20], [BFHVXZ20], [Set20]

Sumcheck arguments 
(this work)

[BCCGP16], [BBBPWM18], 
[LMR19], [BMMTV19], [PLS19], 
[HKR19], [BHRRS20], [ACR20], 

[ACF20], [BFS20], [BLNS20], 
[AC20], [BDFG21], [BHRRS21], 

[LA21], [ACK21]

Folding techniques

Sumcheck 
protocol

41



From two bodies of work……to a unified perspective

Sumchecks and
commitment schemes

[VSBW13], [Wah+17], [ZGKPP17], 
[WTSTW18], [XZZPS19], 

[BCRSVS19], [BCGGRS19], 
[ZXZS20], [CHMVW20], [COS20], 
[CFQR20], [BFHVXZ20], [Set20]

Sumcheck arguments 
(this work)

[BCCGP16], [BBBPWM18], 
[LMR19], [BMMTV19], [PLS19], 
[HKR19], [BHRRS20], [ACR20], 

[ACF20], [BFS20], [BLNS20], 
[AC20], [BDFG21], [BHRRS21], 

[LA21], [ACK21]

Folding techniques

Sumcheck 
protocol

42

Lattice-based 
succinct argument



General goal:
succinct arguments for commitment openings

P V⋮

43



General goal:
succinct arguments for commitment openings

P V

Common input: 
• commitment 𝐶
• commitment key 𝑐𝑘

⋮

44



General goal:
succinct arguments for commitment openings

P V

Common input: 
• commitment 𝐶
• commitment key 𝑐𝑘

⋮

Claim: ∃	𝑚 such that
	𝐶 = Com 𝑐𝑘,𝑚

45



General goal:
succinct arguments for commitment openings

P V

Common input: 
• commitment 𝐶
• commitment key 𝑐𝑘

Succinctness goal: 
communication ≪ |𝑚|

⋮

Claim: ∃	𝑚 such that
	𝐶 = Com 𝑐𝑘,𝑚

46



General goal:
succinct arguments for commitment openings

P V

Common input: 
• commitment 𝐶
• commitment key 𝑐𝑘

Succinctness goal: 
communication ≪ |𝑚|

⋮

Focus: commitments 
with special structure

Claim: ∃	𝑚 such that
	𝐶 = Com 𝑐𝑘,𝑚

47



A new notion :
sumcheck-friendly commitments
Definition: A commitment scheme CM is sumcheck friendly if 

Com 𝑐𝑘,𝑚 = *
:!,…,:ℓ∈;

𝑓(𝑝< 𝜔=, … , 𝜔ℓ , 𝑝?@ 𝜔=, … , 𝜔ℓ )



A new notion :
sumcheck-friendly commitments
Definition: A commitment scheme CM is sumcheck friendly if 

Com 𝑐𝑘,𝑚 = *
:!,…,:ℓ∈;

𝑓(𝑝< 𝜔=, … , 𝜔ℓ , 𝑝?@ 𝜔=, … , 𝜔ℓ )

evaluation 
points from 

𝐻 ⊆ 𝑅, 𝑅 a ring



A new notion :
sumcheck-friendly commitments
Definition: A commitment scheme CM is sumcheck friendly if 

Com 𝑐𝑘,𝑚 = *
:!,…,:ℓ∈;

𝑓(𝑝< 𝜔=, … , 𝜔ℓ , 𝑝?@ 𝜔=, … , 𝜔ℓ )

evaluation 
points from 

𝐻 ⊆ 𝑅, 𝑅 a ring

commitment 
space ℂ is an
𝑅-module



A new notion :
sumcheck-friendly commitments
Definition: A commitment scheme CM is sumcheck friendly if 

Com 𝑐𝑘,𝑚 = *
:!,…,:ℓ∈;

𝑓(𝑝< 𝜔=, … , 𝜔ℓ , 𝑝?@ 𝜔=, … , 𝜔ℓ )

message 
polynomial

in 𝕄[𝑋!, … , 𝑋ℓ], 
𝕄 an 𝑅-module

evaluation 
points from 

𝐻 ⊆ 𝑅, 𝑅 a ring

commitment 
space ℂ is an
𝑅-module



A new notion :
sumcheck-friendly commitments
Definition: A commitment scheme CM is sumcheck friendly if 

Com 𝑐𝑘,𝑚 = *
:!,…,:ℓ∈;

𝑓(𝑝< 𝜔=, … , 𝜔ℓ , 𝑝?@ 𝜔=, … , 𝜔ℓ )

message 
polynomial

in 𝕄[𝑋!, … , 𝑋ℓ], 
𝕄 an 𝑅-module

evaluation 
points from 

𝐻 ⊆ 𝑅, 𝑅 a ring

key polynomial
in 𝕂[𝑋!, … , 𝑋ℓ], 
𝕂 an 𝑅-module

commitment 
space ℂ is an
𝑅-module



A new notion :
sumcheck-friendly commitments
Definition: A commitment scheme CM is sumcheck friendly if 

Com 𝑐𝑘,𝑚 = *
:!,…,:ℓ∈;

𝑓(𝑝< 𝜔=, … , 𝜔ℓ , 𝑝?@ 𝜔=, … , 𝜔ℓ )

message 
polynomial

in 𝕄[𝑋!, … , 𝑋ℓ], 
𝕄 an 𝑅-module

evaluation 
points from 

𝐻 ⊆ 𝑅, 𝑅 a ring

key polynomial
in 𝕂[𝑋!, … , 𝑋ℓ], 
𝕂 an 𝑅-module

combiner  function 𝑓 ∶ 	𝕄×𝕂 → ℂ

commitment 
space ℂ is an
𝑅-module



Main result: sumcheck arguments

Theorem 1: 
If CM is sumcheck-friendly and invertible. The sumcheck protocol 
applied to

(with one extra verifier check) is a succinct argument of knowledge 
with communication ℓ ⋅ deg 𝑝

𝑝 𝑋=, … , 𝑋ℓ = 𝑓 𝑝< 𝑋=, … , 𝑋ℓ , 𝑝?@ 𝑋=, … , 𝑋ℓ ∈ ℂ[𝑋=, … , 𝑋ℓ]
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Lattice-based succinct arguments for NP

Corollary: Assuming SIS is hard over 𝑅L ≔ ℤL[𝑋]/ 𝑋M + 1  and 𝑝 ≪ 𝑞 
primes, there is a zero-knowledge succinct argument of knowledge for NP 
with

R1CS Ring Prover time Verifier time Proof size
𝑅0 𝑂 𝑛 	ops in 𝑅0, 𝑅1 𝑂 𝑛 	ops in 𝑅0, 𝑅1 𝑂 log 𝑛  elems of 𝑅1
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Claim: ∃6𝑎 ∈ 𝔽2 s.t. 𝐶 = 6𝑎, 3𝐺
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Instance:
length 𝑁 

New Instance:
length 𝑁/2 

P V⋮

P V⋮

New Instance:
length 1 

P V⋮

⋮
Generalises approach 
from [Lee21], [Thaler] 
beyond pairings ⋮

[Bootle Chiesa Sotiraki ‘23]
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From groups to rings

Solution: an abstraction for mathematical structures where folding techniques can work
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Assumption Messages Keys Commitments Ideal
BRA small 𝑀@ 𝑀A 𝑀B 𝐼

DLOG 𝔽0 𝔾 𝔾 {0}
DPAIR[AFGHO10] 𝔾! 𝔾" 𝔾B {0}

UO [BFS20] small ℤ 𝔾 𝔾 𝑛ℤ for suitable small 𝑛
RSIS [Ajtai94] small 𝑅1 𝑅1C 𝑅1C 𝑛ℤ for suitable small 𝑛
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• There are lattice-based transparent, 
succinct arguments 

• Many commitment schemes are 
sumcheck friendly

• We can recast many different 
cryptographic settings as bilinear modules

88



Takeaways

• There are lattice-based transparent, 
succinct arguments 

• Many commitment schemes are 
sumcheck friendly

• We can recast many different 
cryptographic settings as bilinear modules

89

Thanks!


