
Introduction to Lattices

Introduction to Lattices

Zacharakis Alexandros

School of Electrical and Computer Engineering, NTUA

May 4, 2017

Introduction to Lattices

Contents

1 Lattices in Rm

2 The LLL Algorithm

3 Babai’s Nearest Plane Algorithm

4 Complexity Results

Introduction to Lattices

Why lattices?

Algebraic Algorithms

Combinatorial Optimization

Complexity

Cryptanalysis

Cryptography

Very efficient
Worst case security guarantees
No known quantum attacks
Exotic constructions

Introduction to Lattices

Why lattices?

Algebraic Algorithms

Combinatorial Optimization

Complexity

Cryptanalysis

Cryptography

Very efficient
Worst case security guarantees
No known quantum attacks
Exotic constructions

Introduction to Lattices

Why lattices?

Algebraic Algorithms

Combinatorial Optimization

Complexity

Cryptanalysis

Cryptography

Very efficient
Worst case security guarantees
No known quantum attacks
Exotic constructions

Introduction to Lattices

Why lattices?

Algebraic Algorithms

Combinatorial Optimization

Complexity

Cryptanalysis

Cryptography

Very efficient
Worst case security guarantees
No known quantum attacks
Exotic constructions

Introduction to Lattices

Why lattices?

Algebraic Algorithms

Combinatorial Optimization

Complexity

Cryptanalysis

Cryptography

Very efficient
Worst case security guarantees
No known quantum attacks
Exotic constructions

Introduction to Lattices

Lattices in Rm

Contents

1 Lattices in Rm

2 The LLL Algorithm

3 Babai’s Nearest Plane Algorithm

4 Complexity Results

Introduction to Lattices

Lattices in Rm

Definition

Definition

Given n linearly independent vectors b1, . . . , bn ∈ Rm the lattice generated by
them is the set

L(b1, . . . , bn) = {
n∑

i=1

xibi | xi ∈ Z}

Denoting B = [b1 b2 . . . bn] equivalently we have

L(B) = {Bx | x ∈ Zn}

B is the basis of the lattice.

m is its dimension.

n is its rank.

A lattice is full rank if m = n.

The span of the lattice is the linear span of its basis.

Introduction to Lattices

Lattices in Rm

Definition

Definition

Given n linearly independent vectors b1, . . . , bn ∈ Rm the lattice generated by
them is the set

L(b1, . . . , bn) = {
n∑

i=1

xibi | xi ∈ Z}

Denoting B = [b1 b2 . . . bn] equivalently we have

L(B) = {Bx | x ∈ Zn}

B is the basis of the lattice.

m is its dimension.

n is its rank.

A lattice is full rank if m = n.

The span of the lattice is the linear span of its basis.

Introduction to Lattices

Lattices in Rm

A lattice has many (infinite) equivalent bases.

We next define the fundamental parallilepiped with respect to a
basis B.

Definition

Fundamental Parallilepiped For a basis B the fundamental parallilepiped
is the set

P(B) = {Bx | x ∈ [0, 1)}

Placing a copy of P(B) in every lattice point we partition span(B).

Introduction to Lattices

Lattices in Rm

A Lattice in R2

b2

b1

A lattice Λ = L(b1, b2) ⊆ R2.

Introduction to Lattices

Lattices in Rm

A different basis for the same lattice

b
0

1

b
0

2

A lattice Λ = L(b1, b2) ⊆ R2.

Introduction to Lattices

Lattices in Rm

Fundamental Parallilepiped I

b2

b1

Introduction to Lattices

Lattices in Rm

Fundamental Parallilepiped II

b
0

1

b
0

2

Introduction to Lattices

Lattices in Rm

Characterizing a Basis

Lemma

Let Λ be a lattice and b1, . . . , bn ∈ Λ be n linearly independent vectors.
Then Λ = L(b1, . . . , bn) iff P(b1, . . . , bn) ∩ Λ = {0}.

Proof.

(⇒) Suppose x ∈ P(b1, . . . , bn) ∩ Λ = {0}. Then

x = Bz for z ∈ Zn

x = By for y ∈ [0, 1)n

Since b1, . . . , bn are linearly independent we get z = 0.
(⇐) Suppose x ∈ Λ. Then x = By for y ∈ Rn. Now
x ′ = B(y − byc) ∈ Λ. We get that y = byc.

�

Introduction to Lattices

Lattices in Rm

Characterizing a Basis

Lemma

Let Λ be a lattice and b1, . . . , bn ∈ Λ be n linearly independent vectors.
Then Λ = L(b1, . . . , bn) iff P(b1, . . . , bn) ∩ Λ = {0}.

Proof.

(⇒) Suppose x ∈ P(b1, . . . , bn) ∩ Λ = {0}. Then

x = Bz for z ∈ Zn

x = By for y ∈ [0, 1)n

Since b1, . . . , bn are linearly independent we get z = 0.
(⇐) Suppose x ∈ Λ. Then x = By for y ∈ Rn. Now
x ′ = B(y − byc) ∈ Λ. We get that y = byc.

�

Introduction to Lattices

Lattices in Rm

Characterizing a Basis

Lemma

Let Λ be a lattice and b1, . . . , bn ∈ Λ be n linearly independent vectors.
Then Λ = L(b1, . . . , bn) iff P(b1, . . . , bn) ∩ Λ = {0}.

Proof.

(⇒) Suppose x ∈ P(b1, . . . , bn) ∩ Λ = {0}. Then

x = Bz for z ∈ Zn

x = By for y ∈ [0, 1)n

Since b1, . . . , bn are linearly independent we get z = 0.

(⇐) Suppose x ∈ Λ. Then x = By for y ∈ Rn. Now
x ′ = B(y − byc) ∈ Λ. We get that y = byc.

�

Introduction to Lattices

Lattices in Rm

Characterizing a Basis

Lemma

Let Λ be a lattice and b1, . . . , bn ∈ Λ be n linearly independent vectors.
Then Λ = L(b1, . . . , bn) iff P(b1, . . . , bn) ∩ Λ = {0}.

Proof.

(⇒) Suppose x ∈ P(b1, . . . , bn) ∩ Λ = {0}. Then

x = Bz for z ∈ Zn

x = By for y ∈ [0, 1)n

Since b1, . . . , bn are linearly independent we get z = 0.
(⇐) Suppose x ∈ Λ. Then x = By for y ∈ Rn. Now
x ′ = B(y − byc) ∈ Λ. We get that y = byc.

�

Introduction to Lattices

Lattices in Rm

Equivalent Basis

Lemma

Suppose B,D ∈ Rm×n rank n matrices. Then L(B) = L(D) iff D = BU
for U ∈ Zn×n unimodular matrix.

Proof.

(⇒) If L(B) = L(D) then each column bi ∈ L(D) so bi = Dui . In
matrix form we have B = DU. Similarly D = BV . Then we have
BTB = UTV TBTBVU so det(BTB) = det(UTV T)det(BTB)det(VU)
and so det(VU)2 = 1 and we get det(V)det(U) = ±1.
(⇐) Suppose D = BU. Then D ⊆ L(B). Also B = DU−1 so B ⊆ L(D).
We get L(B) = L(D). �

Introduction to Lattices

Lattices in Rm

Equivalent Basis

Lemma

Suppose B,D ∈ Rm×n rank n matrices. Then L(B) = L(D) iff D = BU
for U ∈ Zn×n unimodular matrix.

Proof.

(⇒) If L(B) = L(D) then each column bi ∈ L(D) so bi = Dui . In
matrix form we have B = DU. Similarly D = BV . Then we have
BTB = UTV TBTBVU so det(BTB) = det(UTV T)det(BTB)det(VU)
and so det(VU)2 = 1 and we get det(V)det(U) = ±1.
(⇐) Suppose D = BU. Then D ⊆ L(B). Also B = DU−1 so B ⊆ L(D).
We get L(B) = L(D). �

Introduction to Lattices

Lattices in Rm

Equivalent Basis

Lemma

Suppose B,D ∈ Rm×n rank n matrices. Then L(B) = L(D) iff D = BU
for U ∈ Zn×n unimodular matrix.

Proof.

(⇒) If L(B) = L(D) then each column bi ∈ L(D) so bi = Dui . In
matrix form we have B = DU. Similarly D = BV . Then we have
BTB = UTV TBTBVU so det(BTB) = det(UTV T)det(BTB)det(VU)
and so det(VU)2 = 1 and we get det(V)det(U) = ±1.

(⇐) Suppose D = BU. Then D ⊆ L(B). Also B = DU−1 so B ⊆ L(D).
We get L(B) = L(D). �

Introduction to Lattices

Lattices in Rm

Equivalent Basis

Lemma

Suppose B,D ∈ Rm×n rank n matrices. Then L(B) = L(D) iff D = BU
for U ∈ Zn×n unimodular matrix.

Proof.

(⇒) If L(B) = L(D) then each column bi ∈ L(D) so bi = Dui . In
matrix form we have B = DU. Similarly D = BV . Then we have
BTB = UTV TBTBVU so det(BTB) = det(UTV T)det(BTB)det(VU)
and so det(VU)2 = 1 and we get det(V)det(U) = ±1.
(⇐) Suppose D = BU. Then D ⊆ L(B). Also B = DU−1 so B ⊆ L(D).
We get L(B) = L(D). �

Introduction to Lattices

Lattices in Rm

Equivalent Basis

Another characterizations for equivalent basis is the following: B,D are
equivalent basis iff we can constract D from B with the following
operations

1 bi ← bi + kbj for k ∈ Z
2 bi ↔ bj

3 bi ← −bi

Introduction to Lattices

Lattices in Rm

Equivalent Basis

Another characterizations for equivalent basis is the following: B,D are
equivalent basis iff we can constract D from B with the following
operations

1 bi ← bi + kbj for k ∈ Z

2 bi ↔ bj

3 bi ← −bi

Introduction to Lattices

Lattices in Rm

Equivalent Basis

Another characterizations for equivalent basis is the following: B,D are
equivalent basis iff we can constract D from B with the following
operations

1 bi ← bi + kbj for k ∈ Z
2 bi ↔ bj

3 bi ← −bi

Introduction to Lattices

Lattices in Rm

Equivalent Basis

Another characterizations for equivalent basis is the following: B,D are
equivalent basis iff we can constract D from B with the following
operations

1 bi ← bi + kbj for k ∈ Z
2 bi ↔ bj

3 bi ← −bi

Introduction to Lattices

Lattices in Rm

Determinant of a Lattice

Definition

The determinant of a lattice Λ is the n-dimentional volume of a
fundamental parralilepiped P(B), that is det(Λ) =

√
det(BTB).

Note that the determinant is a lattice invariant (does not depend on
the lattice basis).

It expresses the density of a lattice.

Introduction to Lattices

Lattices in Rm

Determinant of a Lattice

Definition

The determinant of a lattice Λ is the n-dimentional volume of a
fundamental parralilepiped P(B), that is det(Λ) =

√
det(BTB).

Note that the determinant is a lattice invariant (does not depend on
the lattice basis).

It expresses the density of a lattice.

Introduction to Lattices

Lattices in Rm

Determinant of a Lattice

Definition

The determinant of a lattice Λ is the n-dimentional volume of a
fundamental parralilepiped P(B), that is det(Λ) =

√
det(BTB).

Note that the determinant is a lattice invariant (does not depend on
the lattice basis).

It expresses the density of a lattice.

Introduction to Lattices

Lattices in Rm

A Sublattice

2b1

b2

Introduction to Lattices

Lattices in Rm

Gram Schmidt Orthogonalization

GSO is an algorithm that takes as input n linear independent vectors and
produces n orthogonal vectors.

It transforms bi to

b̃i = bi −
i−1∑
j=1

µi,j b̃j where µi,j =
〈bi , b̃j〉
〈b̃j , b̃j〉

For all i 6= j 〈b̃i , b̃j〉 = 0.

For all i span(b1, . . . , bi) = span(b̃1, . . . , b̃i)

The order of the input matters.

Introduction to Lattices

Lattices in Rm

Gram Schmidt Orthogonalization

GSO is an algorithm that takes as input n linear independent vectors and
produces n orthogonal vectors.
It transforms bi to

b̃i = bi −
i−1∑
j=1

µi,j b̃j where µi,j =
〈bi , b̃j〉
〈b̃j , b̃j〉

For all i 6= j 〈b̃i , b̃j〉 = 0.

For all i span(b1, . . . , bi) = span(b̃1, . . . , b̃i)

The order of the input matters.

Introduction to Lattices

Lattices in Rm

Gram Schmidt Orthogonalization

GSO is an algorithm that takes as input n linear independent vectors and
produces n orthogonal vectors.
It transforms bi to

b̃i = bi −
i−1∑
j=1

µi,j b̃j where µi,j =
〈bi , b̃j〉
〈b̃j , b̃j〉

For all i 6= j 〈b̃i , b̃j〉 = 0.

For all i span(b1, . . . , bi) = span(b̃1, . . . , b̃i)

The order of the input matters.

Introduction to Lattices

Lattices in Rm

Gram Schmidt Orthogonalization

GSO is an algorithm that takes as input n linear independent vectors and
produces n orthogonal vectors.
It transforms bi to

b̃i = bi −
i−1∑
j=1

µi,j b̃j where µi,j =
〈bi , b̃j〉
〈b̃j , b̃j〉

For all i 6= j 〈b̃i , b̃j〉 = 0.

For all i span(b1, . . . , bi) = span(b̃1, . . . , b̃i)

The order of the input matters.

Introduction to Lattices

Lattices in Rm

Gram Schmidt Orthogonalization

GSO is an algorithm that takes as input n linear independent vectors and
produces n orthogonal vectors.
It transforms bi to

b̃i = bi −
i−1∑
j=1

µi,j b̃j where µi,j =
〈bi , b̃j〉
〈b̃j , b̃j〉

For all i 6= j 〈b̃i , b̃j〉 = 0.

For all i span(b1, . . . , bi) = span(b̃1, . . . , b̃i)

The order of the input matters.

Introduction to Lattices

Lattices in Rm

An example of GSO

b2

b1 = ~b1

~b2

Introduction to Lattices

Lattices in Rm

Gram Schmidt Orthogonormal Basis

Let b1, . . . , bn ∈ Rm. If we normalize the GSO vectors we get an
orthonormal basis

b̃1

‖b̃1‖
, . . . ,

b̃n

‖b̃n‖

In this basis we have

B =



‖b̃1‖ µ2,1‖b̃1‖ . . . µn,1‖b̃1‖
0 ‖b̃2‖ . . . µn,2‖b̃2‖
...

. . .
. . .

...

0 . . . 0 ‖b̃n‖
0 . . . 0 0
...

. . .
...

...
0 . . . 0 0


From this we can easily get that det(L(B)) =

∏n
i=1 ‖b̃i‖

Introduction to Lattices

Lattices in Rm

Gram Schmidt Orthogonormal Basis

Let b1, . . . , bn ∈ Rm. If we normalize the GSO vectors we get an
orthonormal basis

b̃1

‖b̃1‖
, . . . ,

b̃n

‖b̃n‖
In this basis we have

B =



‖b̃1‖ µ2,1‖b̃1‖ . . . µn,1‖b̃1‖
0 ‖b̃2‖ . . . µn,2‖b̃2‖
...

. . .
. . .

...

0 . . . 0 ‖b̃n‖
0 . . . 0 0
...

. . .
...

...
0 . . . 0 0



From this we can easily get that det(L(B)) =
∏n

i=1 ‖b̃i‖

Introduction to Lattices

Lattices in Rm

Gram Schmidt Orthogonormal Basis

Let b1, . . . , bn ∈ Rm. If we normalize the GSO vectors we get an
orthonormal basis

b̃1

‖b̃1‖
, . . . ,

b̃n

‖b̃n‖
In this basis we have

B =



‖b̃1‖ µ2,1‖b̃1‖ . . . µn,1‖b̃1‖
0 ‖b̃2‖ . . . µn,2‖b̃2‖
...

. . .
. . .

...

0 . . . 0 ‖b̃n‖
0 . . . 0 0
...

. . .
...

...
0 . . . 0 0


From this we can easily get that det(L(B)) =

∏n
i=1 ‖b̃i‖

Introduction to Lattices

Lattices in Rm

Successive Minima

We define the i-th successive minima of Λ as the radius of the smallest
ball that contains that contains i linearly independent lattice points.
More formally

Definition

The i-th successive minima of Λ is

λi (Λ) = inf{r | dim(span(Λ ∩ B(0, r))) > i}

Introduction to Lattices

Lattices in Rm

Successive Minima Example

b
0

1

b
0

2

Introduction to Lattices

Lattices in Rm

Successive Minima

Theorem

Let L(B) be a lattie and B̃ its GSO. Then λ1(L(B)) ≥ mini‖b̃i‖ > 0.

Proof.

Suppose x ∈ Zn and Bx ∈ L(B).

Let j ∈ [n] be the greatest such that xj 6= 0.

|〈Bx , b̃j〉| = |〈
∑j

i=1 bixi , b̃j〉| = |xj |‖b̃j‖2

We also have |〈Bx , b̃j〉| ≤ ‖Bx‖ · ‖b̃j‖.
We get that ‖Bx‖ ≥ |xj |‖b̃j‖ ≥ ‖b̃j‖ ≥ mini‖b̃i‖

�

Lattices are discrete structures.

Introduction to Lattices

Lattices in Rm

Successive Minima

Theorem

Let L(B) be a lattie and B̃ its GSO. Then λ1(L(B)) ≥ mini‖b̃i‖ > 0.

Proof.

Suppose x ∈ Zn and Bx ∈ L(B).

Let j ∈ [n] be the greatest such that xj 6= 0.

|〈Bx , b̃j〉| = |〈
∑j

i=1 bixi , b̃j〉| = |xj |‖b̃j‖2

We also have |〈Bx , b̃j〉| ≤ ‖Bx‖ · ‖b̃j‖.
We get that ‖Bx‖ ≥ |xj |‖b̃j‖ ≥ ‖b̃j‖ ≥ mini‖b̃i‖

�

Lattices are discrete structures.

Introduction to Lattices

Lattices in Rm

Successive Minima

Theorem

Let L(B) be a lattie and B̃ its GSO. Then λ1(L(B)) ≥ mini‖b̃i‖ > 0.

Proof.

Suppose x ∈ Zn and Bx ∈ L(B).

Let j ∈ [n] be the greatest such that xj 6= 0.

|〈Bx , b̃j〉| = |〈
∑j

i=1 bixi , b̃j〉| = |xj |‖b̃j‖2

We also have |〈Bx , b̃j〉| ≤ ‖Bx‖ · ‖b̃j‖.
We get that ‖Bx‖ ≥ |xj |‖b̃j‖ ≥ ‖b̃j‖ ≥ mini‖b̃i‖

�

Lattices are discrete structures.

Introduction to Lattices

Lattices in Rm

Successive Minima

Theorem

Let L(B) be a lattie and B̃ its GSO. Then λ1(L(B)) ≥ mini‖b̃i‖ > 0.

Proof.

Suppose x ∈ Zn and Bx ∈ L(B).

Let j ∈ [n] be the greatest such that xj 6= 0.

|〈Bx , b̃j〉| = |〈
∑j

i=1 bixi , b̃j〉| = |xj |‖b̃j‖2

We also have |〈Bx , b̃j〉| ≤ ‖Bx‖ · ‖b̃j‖.
We get that ‖Bx‖ ≥ |xj |‖b̃j‖ ≥ ‖b̃j‖ ≥ mini‖b̃i‖

�

Lattices are discrete structures.

Introduction to Lattices

Lattices in Rm

Successive Minima

Theorem

Let L(B) be a lattie and B̃ its GSO. Then λ1(L(B)) ≥ mini‖b̃i‖ > 0.

Proof.

Suppose x ∈ Zn and Bx ∈ L(B).

Let j ∈ [n] be the greatest such that xj 6= 0.

|〈Bx , b̃j〉| = |〈
∑j

i=1 bixi , b̃j〉| = |xj |‖b̃j‖2

We also have |〈Bx , b̃j〉| ≤ ‖Bx‖ · ‖b̃j‖.

We get that ‖Bx‖ ≥ |xj |‖b̃j‖ ≥ ‖b̃j‖ ≥ mini‖b̃i‖
�

Lattices are discrete structures.

Introduction to Lattices

Lattices in Rm

Successive Minima

Theorem

Let L(B) be a lattie and B̃ its GSO. Then λ1(L(B)) ≥ mini‖b̃i‖ > 0.

Proof.

Suppose x ∈ Zn and Bx ∈ L(B).

Let j ∈ [n] be the greatest such that xj 6= 0.

|〈Bx , b̃j〉| = |〈
∑j

i=1 bixi , b̃j〉| = |xj |‖b̃j‖2

We also have |〈Bx , b̃j〉| ≤ ‖Bx‖ · ‖b̃j‖.
We get that ‖Bx‖ ≥ |xj |‖b̃j‖ ≥ ‖b̃j‖ ≥ mini‖b̃i‖

�

Lattices are discrete structures.

Introduction to Lattices

Lattices in Rm

Successive Minima

Theorem

Let L(B) be a lattie and B̃ its GSO. Then λ1(L(B)) ≥ mini‖b̃i‖ > 0.

Proof.

Suppose x ∈ Zn and Bx ∈ L(B).

Let j ∈ [n] be the greatest such that xj 6= 0.

|〈Bx , b̃j〉| = |〈
∑j

i=1 bixi , b̃j〉| = |xj |‖b̃j‖2

We also have |〈Bx , b̃j〉| ≤ ‖Bx‖ · ‖b̃j‖.
We get that ‖Bx‖ ≥ |xj |‖b̃j‖ ≥ ‖b̃j‖ ≥ mini‖b̃i‖

�

Lattices are discrete structures.

Introduction to Lattices

Lattices in Rm

Blichfeld Theorem

Theorem

For any full rank lattice Λ and any measurable S ⊆ Rn with
vol(S) > det(Λ), there exist z1, z2 ∈ S such that z1 − z2 ∈ Λ.

Proof.

Consider for each point x ∈ Λ the set
x + P(B) = {x + y | y ∈ P(B)}.
These sets partition Rn.

We define Sx = S ∩ (x + P(B)).

S =
⋃

x∈Λ Sx so vol(S) =
∑

x∈Λ vol(Sx) > vol(P(B)).

Define Sx = Sx − x (we move them to the origin).

There must be y 6= x such that Sx ∩ Sy 6= ∅. Suppose z is in both.

We have (z + x), (z + y) ∈ S .

(z + x)− (z + y) = x − y ∈ Λ.

�

Introduction to Lattices

Lattices in Rm

Blichfeld Theorem

Theorem

For any full rank lattice Λ and any measurable S ⊆ Rn with
vol(S) > det(Λ), there exist z1, z2 ∈ S such that z1 − z2 ∈ Λ.

Proof.

Consider for each point x ∈ Λ the set
x + P(B) = {x + y | y ∈ P(B)}.
These sets partition Rn.

We define Sx = S ∩ (x + P(B)).

S =
⋃

x∈Λ Sx so vol(S) =
∑

x∈Λ vol(Sx) > vol(P(B)).

Define Sx = Sx − x (we move them to the origin).

There must be y 6= x such that Sx ∩ Sy 6= ∅. Suppose z is in both.

We have (z + x), (z + y) ∈ S .

(z + x)− (z + y) = x − y ∈ Λ.

�

Introduction to Lattices

Lattices in Rm

Blichfeld Theorem

Theorem

For any full rank lattice Λ and any measurable S ⊆ Rn with
vol(S) > det(Λ), there exist z1, z2 ∈ S such that z1 − z2 ∈ Λ.

Proof.

Consider for each point x ∈ Λ the set
x + P(B) = {x + y | y ∈ P(B)}.

These sets partition Rn.

We define Sx = S ∩ (x + P(B)).

S =
⋃

x∈Λ Sx so vol(S) =
∑

x∈Λ vol(Sx) > vol(P(B)).

Define Sx = Sx − x (we move them to the origin).

There must be y 6= x such that Sx ∩ Sy 6= ∅. Suppose z is in both.

We have (z + x), (z + y) ∈ S .

(z + x)− (z + y) = x − y ∈ Λ.

�

Introduction to Lattices

Lattices in Rm

Blichfeld Theorem

Theorem

For any full rank lattice Λ and any measurable S ⊆ Rn with
vol(S) > det(Λ), there exist z1, z2 ∈ S such that z1 − z2 ∈ Λ.

Proof.

Consider for each point x ∈ Λ the set
x + P(B) = {x + y | y ∈ P(B)}.
These sets partition Rn.

We define Sx = S ∩ (x + P(B)).

S =
⋃

x∈Λ Sx so vol(S) =
∑

x∈Λ vol(Sx) > vol(P(B)).

Define Sx = Sx − x (we move them to the origin).

There must be y 6= x such that Sx ∩ Sy 6= ∅. Suppose z is in both.

We have (z + x), (z + y) ∈ S .

(z + x)− (z + y) = x − y ∈ Λ.

�

Introduction to Lattices

Lattices in Rm

Blichfeld Theorem

Theorem

For any full rank lattice Λ and any measurable S ⊆ Rn with
vol(S) > det(Λ), there exist z1, z2 ∈ S such that z1 − z2 ∈ Λ.

Proof.

Consider for each point x ∈ Λ the set
x + P(B) = {x + y | y ∈ P(B)}.
These sets partition Rn.

We define Sx = S ∩ (x + P(B)).

S =
⋃

x∈Λ Sx so vol(S) =
∑

x∈Λ vol(Sx) > vol(P(B)).

Define Sx = Sx − x (we move them to the origin).

There must be y 6= x such that Sx ∩ Sy 6= ∅. Suppose z is in both.

We have (z + x), (z + y) ∈ S .

(z + x)− (z + y) = x − y ∈ Λ.

�

Introduction to Lattices

Lattices in Rm

Blichfeld Theorem

Theorem

For any full rank lattice Λ and any measurable S ⊆ Rn with
vol(S) > det(Λ), there exist z1, z2 ∈ S such that z1 − z2 ∈ Λ.

Proof.

Consider for each point x ∈ Λ the set
x + P(B) = {x + y | y ∈ P(B)}.
These sets partition Rn.

We define Sx = S ∩ (x + P(B)).

S =
⋃

x∈Λ Sx so vol(S) =
∑

x∈Λ vol(Sx) > vol(P(B)).

Define Sx = Sx − x (we move them to the origin).

There must be y 6= x such that Sx ∩ Sy 6= ∅. Suppose z is in both.

We have (z + x), (z + y) ∈ S .

(z + x)− (z + y) = x − y ∈ Λ.

�

Introduction to Lattices

Lattices in Rm

Blichfeld Theorem

Theorem

For any full rank lattice Λ and any measurable S ⊆ Rn with
vol(S) > det(Λ), there exist z1, z2 ∈ S such that z1 − z2 ∈ Λ.

Proof.

Consider for each point x ∈ Λ the set
x + P(B) = {x + y | y ∈ P(B)}.
These sets partition Rn.

We define Sx = S ∩ (x + P(B)).

S =
⋃

x∈Λ Sx so vol(S) =
∑

x∈Λ vol(Sx) > vol(P(B)).

Define Sx = Sx − x (we move them to the origin).

There must be y 6= x such that Sx ∩ Sy 6= ∅. Suppose z is in both.

We have (z + x), (z + y) ∈ S .

(z + x)− (z + y) = x − y ∈ Λ.

�

Introduction to Lattices

Lattices in Rm

Blichfeld Theorem

Theorem

For any full rank lattice Λ and any measurable S ⊆ Rn with
vol(S) > det(Λ), there exist z1, z2 ∈ S such that z1 − z2 ∈ Λ.

Proof.

Consider for each point x ∈ Λ the set
x + P(B) = {x + y | y ∈ P(B)}.
These sets partition Rn.

We define Sx = S ∩ (x + P(B)).

S =
⋃

x∈Λ Sx so vol(S) =
∑

x∈Λ vol(Sx) > vol(P(B)).

Define Sx = Sx − x (we move them to the origin).

There must be y 6= x such that Sx ∩ Sy 6= ∅. Suppose z is in both.

We have (z + x), (z + y) ∈ S .

(z + x)− (z + y) = x − y ∈ Λ.

�

Introduction to Lattices

Lattices in Rm

Blichfeld Theorem

Theorem

For any full rank lattice Λ and any measurable S ⊆ Rn with
vol(S) > det(Λ), there exist z1, z2 ∈ S such that z1 − z2 ∈ Λ.

Proof.

Consider for each point x ∈ Λ the set
x + P(B) = {x + y | y ∈ P(B)}.
These sets partition Rn.

We define Sx = S ∩ (x + P(B)).

S =
⋃

x∈Λ Sx so vol(S) =
∑

x∈Λ vol(Sx) > vol(P(B)).

Define Sx = Sx − x (we move them to the origin).

There must be y 6= x such that Sx ∩ Sy 6= ∅. Suppose z is in both.

We have (z + x), (z + y) ∈ S .

(z + x)− (z + y) = x − y ∈ Λ.

�

Introduction to Lattices

Lattices in Rm

Blichfeld Theorem

Theorem

For any full rank lattice Λ and any measurable S ⊆ Rn with
vol(S) > det(Λ), there exist z1, z2 ∈ S such that z1 − z2 ∈ Λ.

Proof.

Consider for each point x ∈ Λ the set
x + P(B) = {x + y | y ∈ P(B)}.
These sets partition Rn.

We define Sx = S ∩ (x + P(B)).

S =
⋃

x∈Λ Sx so vol(S) =
∑

x∈Λ vol(Sx) > vol(P(B)).

Define Sx = Sx − x (we move them to the origin).

There must be y 6= x such that Sx ∩ Sy 6= ∅. Suppose z is in both.

We have (z + x), (z + y) ∈ S .

(z + x)− (z + y) = x − y ∈ Λ.

�

Introduction to Lattices

Lattices in Rm

Minkowski’s Convex Body Theorem

Theorem

For any full rank lattice Λ and any centrally symmetric, convex set
S ⊆ Rn if vol(S) > 2ndet(Λ), then S contains a non zero lattice point.

Proof.

Define S ′ = 1
2S = {x | 2x ∈ S}.

We have vol(S ′) = 2−nvol(S) > det(Λ).

By the previous theorem, there exist z1, z2 ∈ S ′ such that
z1 − z2 ∈ Λ.

We have 2z1,−2z2 ∈ S and we get z1 − z2 ∈ S

�

Introduction to Lattices

Lattices in Rm

Minkowski’s Convex Body Theorem

Theorem

For any full rank lattice Λ and any centrally symmetric, convex set
S ⊆ Rn if vol(S) > 2ndet(Λ), then S contains a non zero lattice point.

Proof.

Define S ′ = 1
2S = {x | 2x ∈ S}.

We have vol(S ′) = 2−nvol(S) > det(Λ).

By the previous theorem, there exist z1, z2 ∈ S ′ such that
z1 − z2 ∈ Λ.

We have 2z1,−2z2 ∈ S and we get z1 − z2 ∈ S

�

Introduction to Lattices

Lattices in Rm

Minkowski’s Convex Body Theorem

Theorem

For any full rank lattice Λ and any centrally symmetric, convex set
S ⊆ Rn if vol(S) > 2ndet(Λ), then S contains a non zero lattice point.

Proof.

Define S ′ = 1
2S = {x | 2x ∈ S}.

We have vol(S ′) = 2−nvol(S) > det(Λ).

By the previous theorem, there exist z1, z2 ∈ S ′ such that
z1 − z2 ∈ Λ.

We have 2z1,−2z2 ∈ S and we get z1 − z2 ∈ S

�

Introduction to Lattices

Lattices in Rm

Minkowski’s Convex Body Theorem

Theorem

For any full rank lattice Λ and any centrally symmetric, convex set
S ⊆ Rn if vol(S) > 2ndet(Λ), then S contains a non zero lattice point.

Proof.

Define S ′ = 1
2S = {x | 2x ∈ S}.

We have vol(S ′) = 2−nvol(S) > det(Λ).

By the previous theorem, there exist z1, z2 ∈ S ′ such that
z1 − z2 ∈ Λ.

We have 2z1,−2z2 ∈ S and we get z1 − z2 ∈ S

�

Introduction to Lattices

Lattices in Rm

Minkowski’s Convex Body Theorem

Theorem

For any full rank lattice Λ and any centrally symmetric, convex set
S ⊆ Rn if vol(S) > 2ndet(Λ), then S contains a non zero lattice point.

Proof.

Define S ′ = 1
2S = {x | 2x ∈ S}.

We have vol(S ′) = 2−nvol(S) > det(Λ).

By the previous theorem, there exist z1, z2 ∈ S ′ such that
z1 − z2 ∈ Λ.

We have 2z1,−2z2 ∈ S and we get z1 − z2 ∈ S

�

Introduction to Lattices

Lattices in Rm

Minkowski’s Convex Body Theorem

Theorem

For any full rank lattice Λ and any centrally symmetric, convex set
S ⊆ Rn if vol(S) > 2ndet(Λ), then S contains a non zero lattice point.

Proof.

Define S ′ = 1
2S = {x | 2x ∈ S}.

We have vol(S ′) = 2−nvol(S) > det(Λ).

By the previous theorem, there exist z1, z2 ∈ S ′ such that
z1 − z2 ∈ Λ.

We have 2z1,−2z2 ∈ S and we get z1 − z2 ∈ S

�

Introduction to Lattices

Lattices in Rm

Minkowski’s Convex Body Theorem

S

S
0

z2
2z2

0

z1

2z1

−2z2

z1 − z2

Introduction to Lattices

Lattices in Rm

Bounding Successive Minima

By selecting appropriate sets (ball and ellipsoid respectively) we can
deduce the following upper bounds for the succesive minima using the
previous theorem.

λ1(Λ) ≤
√
n · det(Λ)

1
n

(
n∏

i=1

λi (Λ))
1
n ≤
√
n · det(Λ)

1
n

Introduction to Lattices

Lattices in Rm

Computational Problems

Algebraic lattice points are easy:

Membership: Given a matrix B and a point x decide wheather
x ∈ L(B).

Equivalence: Given matrices B,D decide wheather L(B) = L(D).

Things get harder when geometry comes to play.

Introduction to Lattices

Lattices in Rm

Computational Problems

Algebraic lattice points are easy:

Membership: Given a matrix B and a point x decide wheather
x ∈ L(B).

Equivalence: Given matrices B,D decide wheather L(B) = L(D).

Things get harder when geometry comes to play.

Introduction to Lattices

Lattices in Rm

Computational Problems

Algebraic lattice points are easy:

Membership: Given a matrix B and a point x decide wheather
x ∈ L(B).

Equivalence: Given matrices B,D decide wheather L(B) = L(D).

Things get harder when geometry comes to play.

Introduction to Lattices

Lattices in Rm

Computational Problems

Algebraic lattice points are easy:

Membership: Given a matrix B and a point x decide wheather
x ∈ L(B).

Equivalence: Given matrices B,D decide wheather L(B) = L(D).

Things get harder when geometry comes to play.

Introduction to Lattices

Lattices in Rm

Shortest Vector Problem

SearchSVPγ : Given B ∈ Zm×n find v ∈ L(B) such that v 6= 0 and
‖v‖ ≤ γ · λ1(L(B)).

OptimizationSVPγ : Given B ∈ Zm×n find d such that
d ≤ λ1(L(B)) ≤ γ · d .

PromiseSVPγ : Given (B, r) with B ∈ Zm×n and r ∈ Q decide
whether λ1(L(B)) ≤ r or λ1(L(B)) > γ · r given the promise that
one of these is true

For γ = 1 we get the exact versions of these problems. These are
computationally equivalent.
For the general case it is an open problem if this holds.

Introduction to Lattices

Lattices in Rm

Shortest Vector Problem

SearchSVPγ : Given B ∈ Zm×n find v ∈ L(B) such that v 6= 0 and
‖v‖ ≤ γ · λ1(L(B)).

OptimizationSVPγ : Given B ∈ Zm×n find d such that
d ≤ λ1(L(B)) ≤ γ · d .

PromiseSVPγ : Given (B, r) with B ∈ Zm×n and r ∈ Q decide
whether λ1(L(B)) ≤ r or λ1(L(B)) > γ · r given the promise that
one of these is true

For γ = 1 we get the exact versions of these problems. These are
computationally equivalent.
For the general case it is an open problem if this holds.

Introduction to Lattices

Lattices in Rm

Shortest Vector Problem

SearchSVPγ : Given B ∈ Zm×n find v ∈ L(B) such that v 6= 0 and
‖v‖ ≤ γ · λ1(L(B)).

OptimizationSVPγ : Given B ∈ Zm×n find d such that
d ≤ λ1(L(B)) ≤ γ · d .

PromiseSVPγ : Given (B, r) with B ∈ Zm×n and r ∈ Q decide
whether λ1(L(B)) ≤ r or λ1(L(B)) > γ · r given the promise that
one of these is true

For γ = 1 we get the exact versions of these problems. These are
computationally equivalent.
For the general case it is an open problem if this holds.

Introduction to Lattices

Lattices in Rm

Shortest Vector Problem

SearchSVPγ : Given B ∈ Zm×n find v ∈ L(B) such that v 6= 0 and
‖v‖ ≤ γ · λ1(L(B)).

OptimizationSVPγ : Given B ∈ Zm×n find d such that
d ≤ λ1(L(B)) ≤ γ · d .

PromiseSVPγ : Given (B, r) with B ∈ Zm×n and r ∈ Q decide
whether λ1(L(B)) ≤ r or λ1(L(B)) > γ · r given the promise that
one of these is true

For γ = 1 we get the exact versions of these problems. These are
computationally equivalent.
For the general case it is an open problem if this holds.

Introduction to Lattices

Lattices in Rm

Shortest Vector Problem

SearchSVPγ : Given B ∈ Zm×n find v ∈ L(B) such that v 6= 0 and
‖v‖ ≤ γ · λ1(L(B)).

OptimizationSVPγ : Given B ∈ Zm×n find d such that
d ≤ λ1(L(B)) ≤ γ · d .

PromiseSVPγ : Given (B, r) with B ∈ Zm×n and r ∈ Q decide
whether λ1(L(B)) ≤ r or λ1(L(B)) > γ · r given the promise that
one of these is true

For γ = 1 we get the exact versions of these problems. These are
computationally equivalent.

For the general case it is an open problem if this holds.

Introduction to Lattices

Lattices in Rm

Shortest Vector Problem

SearchSVPγ : Given B ∈ Zm×n find v ∈ L(B) such that v 6= 0 and
‖v‖ ≤ γ · λ1(L(B)).

OptimizationSVPγ : Given B ∈ Zm×n find d such that
d ≤ λ1(L(B)) ≤ γ · d .

PromiseSVPγ : Given (B, r) with B ∈ Zm×n and r ∈ Q decide
whether λ1(L(B)) ≤ r or λ1(L(B)) > γ · r given the promise that
one of these is true

For γ = 1 we get the exact versions of these problems. These are
computationally equivalent.
For the general case it is an open problem if this holds.

Introduction to Lattices

Lattices in Rm

Closest Vector Problem

SearchCVPγ : Given B ∈ Zm×n and t ∈ Zm find v ∈ L(B) such
that ‖v − t‖ ≤ γ · dist(t,L(B)).

OptimizationCVPγ : Given B ∈ Zm×n and t ∈ Zm find d such that
d ≤ dist(t,L(B)) ≤ γ · d .

PromiseCVPγ : Given (B, t, r) with B ∈ Zm×n, t ∈ Zm and r ∈ Q
decide whether dist(t,L(B)) ≤ r or dist(t,L(B)) > γ · r given the
promise that one of these is true

Introduction to Lattices

Lattices in Rm

Closest Vector Problem

SearchCVPγ : Given B ∈ Zm×n and t ∈ Zm find v ∈ L(B) such
that ‖v − t‖ ≤ γ · dist(t,L(B)).

OptimizationCVPγ : Given B ∈ Zm×n and t ∈ Zm find d such that
d ≤ dist(t,L(B)) ≤ γ · d .

PromiseCVPγ : Given (B, t, r) with B ∈ Zm×n, t ∈ Zm and r ∈ Q
decide whether dist(t,L(B)) ≤ r or dist(t,L(B)) > γ · r given the
promise that one of these is true

Introduction to Lattices

Lattices in Rm

Closest Vector Problem

SearchCVPγ : Given B ∈ Zm×n and t ∈ Zm find v ∈ L(B) such
that ‖v − t‖ ≤ γ · dist(t,L(B)).

OptimizationCVPγ : Given B ∈ Zm×n and t ∈ Zm find d such that
d ≤ dist(t,L(B)) ≤ γ · d .

PromiseCVPγ : Given (B, t, r) with B ∈ Zm×n, t ∈ Zm and r ∈ Q
decide whether dist(t,L(B)) ≤ r or dist(t,L(B)) > γ · r given the
promise that one of these is true

Introduction to Lattices

Lattices in Rm

Closest Vector Problem

SearchCVPγ : Given B ∈ Zm×n and t ∈ Zm find v ∈ L(B) such
that ‖v − t‖ ≤ γ · dist(t,L(B)).

OptimizationCVPγ : Given B ∈ Zm×n and t ∈ Zm find d such that
d ≤ dist(t,L(B)) ≤ γ · d .

PromiseCVPγ : Given (B, t, r) with B ∈ Zm×n, t ∈ Zm and r ∈ Q
decide whether dist(t,L(B)) ≤ r or dist(t,L(B)) > γ · r given the
promise that one of these is true

Introduction to Lattices

The LLL Algorithm

Contents

1 Lattices in Rm

2 The LLL Algorithm

3 Babai’s Nearest Plane Algorithm

4 Complexity Results

Introduction to Lattices

The LLL Algorithm

The LLL Algorithm

Developed by A. Lenstra, H. Lenstra, L. Lovasz in 1982.

Solves SVP for γ = 2√
3

n
.

Exponential approximation ratio in the dimention of the lattice.

Improved by Schnorr for γ = 2O(n(log log n)2/ log n).

It is also used for approximating CVP.

Used for many problems, namely many algebraic problems,
combinatorial optimization, cryptanalisis.

Introduction to Lattices

The LLL Algorithm

The LLL Algorithm

Developed by A. Lenstra, H. Lenstra, L. Lovasz in 1982.

Solves SVP for γ = 2√
3

n
.

Exponential approximation ratio in the dimention of the lattice.

Improved by Schnorr for γ = 2O(n(log log n)2/ log n).

It is also used for approximating CVP.

Used for many problems, namely many algebraic problems,
combinatorial optimization, cryptanalisis.

Introduction to Lattices

The LLL Algorithm

The LLL Algorithm

Developed by A. Lenstra, H. Lenstra, L. Lovasz in 1982.

Solves SVP for γ = 2√
3

n
.

Exponential approximation ratio in the dimention of the lattice.

Improved by Schnorr for γ = 2O(n(log log n)2/ log n).

It is also used for approximating CVP.

Used for many problems, namely many algebraic problems,
combinatorial optimization, cryptanalisis.

Introduction to Lattices

The LLL Algorithm

The LLL Algorithm

Developed by A. Lenstra, H. Lenstra, L. Lovasz in 1982.

Solves SVP for γ = 2√
3

n
.

Exponential approximation ratio in the dimention of the lattice.

Improved by Schnorr for γ = 2O(n(log log n)2/ log n).

It is also used for approximating CVP.

Used for many problems, namely many algebraic problems,
combinatorial optimization, cryptanalisis.

Introduction to Lattices

The LLL Algorithm

The LLL Algorithm

Developed by A. Lenstra, H. Lenstra, L. Lovasz in 1982.

Solves SVP for γ = 2√
3

n
.

Exponential approximation ratio in the dimention of the lattice.

Improved by Schnorr for γ = 2O(n(log log n)2/ log n).

It is also used for approximating CVP.

Used for many problems, namely many algebraic problems,
combinatorial optimization, cryptanalisis.

Introduction to Lattices

The LLL Algorithm

The LLL Algorithm

Developed by A. Lenstra, H. Lenstra, L. Lovasz in 1982.

Solves SVP for γ = 2√
3

n
.

Exponential approximation ratio in the dimention of the lattice.

Improved by Schnorr for γ = 2O(n(log log n)2/ log n).

It is also used for approximating CVP.

Used for many problems, namely many algebraic problems,
combinatorial optimization, cryptanalisis.

Introduction to Lattices

The LLL Algorithm

δ−LLL Reduced Basis

Definition

A basis B = [b1 b2 . . . bn] is a δ−LLL reduced basis if

1 forall i ∈ [n], j < i it holds that |µi,j | ≤ 1
2

2 forall i ∈ [n] it holds that δ‖b̃i‖2 ≤ ‖µi+1,i b̃i + b̃i+1‖2.

We must have 1
4 < δ < 1. Consider δ = 3

4 .
The second condition can be written as

‖b̃i+1‖2 ≥ (δ − µ2
i+1,i)‖b̃i‖2 ≥ (δ − 1

4
)‖b̃i‖

That is b̃i+1 is not much shorter than b̃i

LLL produces a δ−LLL reduced basis.

Introduction to Lattices

The LLL Algorithm

δ−LLL Reduced Basis

Definition

A basis B = [b1 b2 . . . bn] is a δ−LLL reduced basis if

1 forall i ∈ [n], j < i it holds that |µi,j | ≤ 1
2

2 forall i ∈ [n] it holds that δ‖b̃i‖2 ≤ ‖µi+1,i b̃i + b̃i+1‖2.

We must have 1
4 < δ < 1. Consider δ = 3

4 .

The second condition can be written as

‖b̃i+1‖2 ≥ (δ − µ2
i+1,i)‖b̃i‖2 ≥ (δ − 1

4
)‖b̃i‖

That is b̃i+1 is not much shorter than b̃i

LLL produces a δ−LLL reduced basis.

Introduction to Lattices

The LLL Algorithm

δ−LLL Reduced Basis

Definition

A basis B = [b1 b2 . . . bn] is a δ−LLL reduced basis if

1 forall i ∈ [n], j < i it holds that |µi,j | ≤ 1
2

2 forall i ∈ [n] it holds that δ‖b̃i‖2 ≤ ‖µi+1,i b̃i + b̃i+1‖2.

We must have 1
4 < δ < 1. Consider δ = 3

4 .
The second condition can be written as

‖b̃i+1‖2 ≥ (δ − µ2
i+1,i)‖b̃i‖2 ≥ (δ − 1

4
)‖b̃i‖

That is b̃i+1 is not much shorter than b̃i

LLL produces a δ−LLL reduced basis.

Introduction to Lattices

The LLL Algorithm

δ−LLL Reduced Basis

Definition

A basis B = [b1 b2 . . . bn] is a δ−LLL reduced basis if

1 forall i ∈ [n], j < i it holds that |µi,j | ≤ 1
2

2 forall i ∈ [n] it holds that δ‖b̃i‖2 ≤ ‖µi+1,i b̃i + b̃i+1‖2.

We must have 1
4 < δ < 1. Consider δ = 3

4 .
The second condition can be written as

‖b̃i+1‖2 ≥ (δ − µ2
i+1,i)‖b̃i‖2 ≥ (δ − 1

4
)‖b̃i‖

That is b̃i+1 is not much shorter than b̃i

LLL produces a δ−LLL reduced basis.

Introduction to Lattices

The LLL Algorithm

δ−LLL Reduced Basis

Consider the orthonormal basis produced by GSO. A δ−LLL reduced
basis looks like this

‖b̃1 ≤ 1
2‖b̃1‖ · · · ≤ 1

2‖b̃1‖
0 ‖b̃2‖ · · · ≤ 1

2‖b̃2‖
...

...
. . .

...

0 0 . . . ≤ 1
2‖b̃n−1‖

0 0 . . . ‖b̃n‖



Introduction to Lattices

The LLL Algorithm

Approximating SVP with LLL

Theorem

Suppose b1, . . . , bn is a δ−LLL reduced basis. Then

‖b1‖ ≤
(2√

4δ − 1

)n−1

λ1(L(B))

Proof.

We have

‖b̃n‖2 ≥
(
δ − 1

4

)
‖b̃n−1‖2 ≥ . . . ≥

(
δ − 1

4

)n−1

‖b̃1‖2

After a few calculations we get that forall i

‖b̃1‖ ≤
(
δ − 1

4

) n−1
2 ‖b̃i‖

and since λ1(L(B)) ≥ mini‖b̃i‖ we get the result. �

For δ = 3
4

this gives a 2
n−1

2 approximation ratio.

Introduction to Lattices

The LLL Algorithm

Approximating SVP with LLL

Theorem

Suppose b1, . . . , bn is a δ−LLL reduced basis. Then

‖b1‖ ≤
(2√

4δ − 1

)n−1

λ1(L(B))

Proof.

We have

‖b̃n‖2 ≥
(
δ − 1

4

)
‖b̃n−1‖2 ≥ . . . ≥

(
δ − 1

4

)n−1

‖b̃1‖2

After a few calculations we get that forall i

‖b̃1‖ ≤
(
δ − 1

4

) n−1
2 ‖b̃i‖

and since λ1(L(B)) ≥ mini‖b̃i‖ we get the result. �

For δ = 3
4

this gives a 2
n−1

2 approximation ratio.

Introduction to Lattices

The LLL Algorithm

Approximating SVP with LLL

Theorem

Suppose b1, . . . , bn is a δ−LLL reduced basis. Then

‖b1‖ ≤
(2√

4δ − 1

)n−1

λ1(L(B))

Proof.

We have

‖b̃n‖2 ≥
(
δ − 1

4

)
‖b̃n−1‖2 ≥ . . . ≥

(
δ − 1

4

)n−1

‖b̃1‖2

After a few calculations we get that forall i

‖b̃1‖ ≤
(
δ − 1

4

) n−1
2 ‖b̃i‖

and since λ1(L(B)) ≥ mini‖b̃i‖ we get the result. �

For δ = 3
4

this gives a 2
n−1

2 approximation ratio.

Introduction to Lattices

The LLL Algorithm

Approximating SVP with LLL

Theorem

Suppose b1, . . . , bn is a δ−LLL reduced basis. Then

‖b1‖ ≤
(2√

4δ − 1

)n−1

λ1(L(B))

Proof.

We have

‖b̃n‖2 ≥
(
δ − 1

4

)
‖b̃n−1‖2 ≥ . . . ≥

(
δ − 1

4

)n−1

‖b̃1‖2

After a few calculations we get that forall i

‖b̃1‖ ≤
(
δ − 1

4

) n−1
2 ‖b̃i‖

and since λ1(L(B)) ≥ mini‖b̃i‖ we get the result. �

For δ = 3
4

this gives a 2
n−1

2 approximation ratio.

Introduction to Lattices

The LLL Algorithm

The LLL Algorithm

1 Start Compute b̃1, . . . , b̃n

2 Reduction
for i = 2 to n
for j = i − 1 to 1

ci,j = b 〈bi ,b̃j〉〈b̃j ,b̃j〉
e

bi ← bi − ci,jbj

3 Swap
if there exists i s.t δ‖b̃i‖2 > ‖µi+1,i b̃i + b̃i+1‖2

bi ↔ bi+1

goto start

Introduction to Lattices

The LLL Algorithm

Correctness of the algorithm

Suppose that the LLL algorithm terminates.

A simple calculations shows that GSO does not change during the
reduction step.

Condition 2 is enforced by the swap step.

Condition 1 is achieved by the reduction step. Namely

|µi,j | =
∣∣∣ 〈bi − ci,jbj , b̃j〉

〈b̃j , b̃j〉

∣∣∣ =
∣∣∣ 〈bi , b̃j〉
〈b̃j , b̃j〉

− b〈bi , b̃j〉
〈b̃j , b̃j〉

e · 〈bj , b̃j〉
〈b̃j , b̃j〉

∣∣∣ ≤ 1

2

Each iteration runs in polynomial time with respect to the input (not
so simple).

We need to show that the number of iterations is polynomial.

Introduction to Lattices

The LLL Algorithm

Correctness of the algorithm

Suppose that the LLL algorithm terminates.

A simple calculations shows that GSO does not change during the
reduction step.

Condition 2 is enforced by the swap step.

Condition 1 is achieved by the reduction step. Namely

|µi,j | =
∣∣∣ 〈bi − ci,jbj , b̃j〉

〈b̃j , b̃j〉

∣∣∣ =
∣∣∣ 〈bi , b̃j〉
〈b̃j , b̃j〉

− b〈bi , b̃j〉
〈b̃j , b̃j〉

e · 〈bj , b̃j〉
〈b̃j , b̃j〉

∣∣∣ ≤ 1

2

Each iteration runs in polynomial time with respect to the input (not
so simple).

We need to show that the number of iterations is polynomial.

Introduction to Lattices

The LLL Algorithm

Correctness of the algorithm

Suppose that the LLL algorithm terminates.

A simple calculations shows that GSO does not change during the
reduction step.

Condition 2 is enforced by the swap step.

Condition 1 is achieved by the reduction step. Namely

|µi,j | =
∣∣∣ 〈bi − ci,jbj , b̃j〉

〈b̃j , b̃j〉

∣∣∣ =
∣∣∣ 〈bi , b̃j〉
〈b̃j , b̃j〉

− b〈bi , b̃j〉
〈b̃j , b̃j〉

e · 〈bj , b̃j〉
〈b̃j , b̃j〉

∣∣∣ ≤ 1

2

Each iteration runs in polynomial time with respect to the input (not
so simple).

We need to show that the number of iterations is polynomial.

Introduction to Lattices

The LLL Algorithm

Correctness of the algorithm

Suppose that the LLL algorithm terminates.

A simple calculations shows that GSO does not change during the
reduction step.

Condition 2 is enforced by the swap step.

Condition 1 is achieved by the reduction step. Namely

|µi,j | =
∣∣∣ 〈bi − ci,jbj , b̃j〉

〈b̃j , b̃j〉

∣∣∣ =
∣∣∣ 〈bi , b̃j〉
〈b̃j , b̃j〉

− b〈bi , b̃j〉
〈b̃j , b̃j〉

e · 〈bj , b̃j〉
〈b̃j , b̃j〉

∣∣∣ ≤ 1

2

Each iteration runs in polynomial time with respect to the input (not
so simple).

We need to show that the number of iterations is polynomial.

Introduction to Lattices

The LLL Algorithm

Correctness of the algorithm

Suppose that the LLL algorithm terminates.

A simple calculations shows that GSO does not change during the
reduction step.

Condition 2 is enforced by the swap step.

Condition 1 is achieved by the reduction step. Namely

|µi,j | =
∣∣∣ 〈bi − ci,jbj , b̃j〉

〈b̃j , b̃j〉

∣∣∣ =
∣∣∣ 〈bi , b̃j〉
〈b̃j , b̃j〉

− b〈bi , b̃j〉
〈b̃j , b̃j〉

e · 〈bj , b̃j〉
〈b̃j , b̃j〉

∣∣∣ ≤ 1

2

Each iteration runs in polynomial time with respect to the input (not
so simple).

We need to show that the number of iterations is polynomial.

Introduction to Lattices

The LLL Algorithm

Correctness of the algorithm

Suppose that the LLL algorithm terminates.

A simple calculations shows that GSO does not change during the
reduction step.

Condition 2 is enforced by the swap step.

Condition 1 is achieved by the reduction step. Namely

|µi,j | =
∣∣∣ 〈bi − ci,jbj , b̃j〉

〈b̃j , b̃j〉

∣∣∣ =
∣∣∣ 〈bi , b̃j〉
〈b̃j , b̃j〉

− b〈bi , b̃j〉
〈b̃j , b̃j〉

e · 〈bj , b̃j〉
〈b̃j , b̃j〉

∣∣∣ ≤ 1

2

Each iteration runs in polynomial time with respect to the input (not
so simple).

We need to show that the number of iterations is polynomial.

Introduction to Lattices

The LLL Algorithm

Bounding iterations of LLL

We define DB,i = detΛi =
∏i

j=1 ‖b̃1‖ · · · ‖b̃i‖

We define the potential function DB =
∏n

i=1DB,i .

Initially the size of DB is polynomial. This is because

DB =
n∏

i=1

‖b̃1‖ · · · ‖b̃i‖ = ‖b1‖n‖b2‖n−1 · · · ‖bn‖ ≤ max
i
‖bi‖

n(n+1)
2

We will show that DB decreases by a constant factor in each
iteration.

Introduction to Lattices

The LLL Algorithm

Bounding iterations of LLL

We define DB,i = detΛi =
∏i

j=1 ‖b̃1‖ · · · ‖b̃i‖
We define the potential function DB =

∏n
i=1DB,i .

Initially the size of DB is polynomial. This is because

DB =
n∏

i=1

‖b̃1‖ · · · ‖b̃i‖ = ‖b1‖n‖b2‖n−1 · · · ‖bn‖ ≤ max
i
‖bi‖

n(n+1)
2

We will show that DB decreases by a constant factor in each
iteration.

Introduction to Lattices

The LLL Algorithm

Bounding iterations of LLL

We define DB,i = detΛi =
∏i

j=1 ‖b̃1‖ · · · ‖b̃i‖
We define the potential function DB =

∏n
i=1DB,i .

Initially the size of DB is polynomial. This is because

DB =
n∏

i=1

‖b̃1‖ · · · ‖b̃i‖ = ‖b1‖n‖b2‖n−1 · · · ‖bn‖ ≤ max
i
‖bi‖

n(n+1)
2

We will show that DB decreases by a constant factor in each
iteration.

Introduction to Lattices

The LLL Algorithm

Bounding iterations of LLL

We define DB,i = detΛi =
∏i

j=1 ‖b̃1‖ · · · ‖b̃i‖
We define the potential function DB =

∏n
i=1DB,i .

Initially the size of DB is polynomial. This is because

DB =
n∏

i=1

‖b̃1‖ · · · ‖b̃i‖ = ‖b1‖n‖b2‖n−1 · · · ‖bn‖ ≤ max
i
‖bi‖

n(n+1)
2

We will show that DB decreases by a constant factor in each
iteration.

Introduction to Lattices

The LLL Algorithm

Bounding iterations of LLL

During the reduction step DB does not change.

After swaping bi ↔ bi+1, the only quantity that changes is DB,i

We have
D′B
DB

=
D′B,i
DB,i

. In particular

D′B,i
DB,i

=
det(L(b1, . . . , bi−1, bi+1))

det(L(b1, . . . , bi))

=
(
∏i−1

j=1 ‖b̃j‖)‖µi+1,i b̃i + b̃i+1‖∏i
j=1 ‖b̃j‖

=
‖b̃j‖ · ‖µi+1,i b̃i + b̃i+1‖

‖b̃i‖
≤
√
δ

So we can have at most log 1√
δ
DB iteration which is polynomial.

Introduction to Lattices

The LLL Algorithm

Bounding iterations of LLL

During the reduction step DB does not change.

After swaping bi ↔ bi+1, the only quantity that changes is DB,i

We have
D′B
DB

=
D′B,i
DB,i

. In particular

D′B,i
DB,i

=
det(L(b1, . . . , bi−1, bi+1))

det(L(b1, . . . , bi))

=
(
∏i−1

j=1 ‖b̃j‖)‖µi+1,i b̃i + b̃i+1‖∏i
j=1 ‖b̃j‖

=
‖b̃j‖ · ‖µi+1,i b̃i + b̃i+1‖

‖b̃i‖
≤
√
δ

So we can have at most log 1√
δ
DB iteration which is polynomial.

Introduction to Lattices

The LLL Algorithm

Bounding iterations of LLL

During the reduction step DB does not change.

After swaping bi ↔ bi+1, the only quantity that changes is DB,i

We have
D′B
DB

=
D′B,i
DB,i

. In particular

D′B,i
DB,i

=
det(L(b1, . . . , bi−1, bi+1))

det(L(b1, . . . , bi))

=
(
∏i−1

j=1 ‖b̃j‖)‖µi+1,i b̃i + b̃i+1‖∏i
j=1 ‖b̃j‖

=
‖b̃j‖ · ‖µi+1,i b̃i + b̃i+1‖

‖b̃i‖
≤
√
δ

So we can have at most log 1√
δ
DB iteration which is polynomial.

Introduction to Lattices

The LLL Algorithm

Bounding iterations of LLL

During the reduction step DB does not change.

After swaping bi ↔ bi+1, the only quantity that changes is DB,i

We have
D′B
DB

=
D′B,i
DB,i

. In particular

D′B,i
DB,i

=
det(L(b1, . . . , bi−1, bi+1))

det(L(b1, . . . , bi))

=
(
∏i−1

j=1 ‖b̃j‖)‖µi+1,i b̃i + b̃i+1‖∏i
j=1 ‖b̃j‖

=
‖b̃j‖ · ‖µi+1,i b̃i + b̃i+1‖

‖b̃i‖
≤
√
δ

So we can have at most log 1√
δ
DB iteration which is polynomial.

Introduction to Lattices

Babai’s Nearest Plane Algorithm

Contents

1 Lattices in Rm

2 The LLL Algorithm

3 Babai’s Nearest Plane Algorithm

4 Complexity Results

Introduction to Lattices

Babai’s Nearest Plane Algorithm

Babai’s Nearest Plane Algorithm

Developed by L. Babai in 1986.

Solves SearchCVP for γ = 2 · 2√
3

n
.

Utilizes an LLL basis to solve SeacrhCVP.

We will present the algorithm and omit its analysis.

Introduction to Lattices

Babai’s Nearest Plane Algorithm

Babai’s Nearest Plane Algorithm

Developed by L. Babai in 1986.

Solves SearchCVP for γ = 2 · 2√
3

n
.

Utilizes an LLL basis to solve SeacrhCVP.

We will present the algorithm and omit its analysis.

Introduction to Lattices

Babai’s Nearest Plane Algorithm

Babai’s Nearest Plane Algorithm

Developed by L. Babai in 1986.

Solves SearchCVP for γ = 2 · 2√
3

n
.

Utilizes an LLL basis to solve SeacrhCVP.

We will present the algorithm and omit its analysis.

Introduction to Lattices

Babai’s Nearest Plane Algorithm

Babai’s Nearest Plane Algorithm

Developed by L. Babai in 1986.

Solves SearchCVP for γ = 2 · 2√
3

n
.

Utilizes an LLL basis to solve SeacrhCVP.

We will present the algorithm and omit its analysis.

Introduction to Lattices

Babai’s Nearest Plane Algorithm

The Nearest Plane Algorithm

Compute a δ−LLL reduced basis.

b ← t
for j = n to 1

cj = b 〈b,b̃j〉〈b̃j ,b̃j〉
e

b ← b − cjbj

return t − b

Introduction to Lattices

Babai’s Nearest Plane Algorithm

Geometric Illustration of the Algorithm

L(b1; b2)

b3 + L(b1; b2)

2b3 + L(b1; b2)

b1

b2

b3

2b3

tπ~b3
(t)

~b3

Introduction to Lattices

Complexity Results

Contents

1 Lattices in Rm

2 The LLL Algorithm

3 Babai’s Nearest Plane Algorithm

4 Complexity Results

Introduction to Lattices

Complexity Results

PromiseCVP1 is NP Complete

We show that SubsetSum reduces to PromiseCVP1.

We map an instance of
Subset Sum as follows

〈{a1, . . . , an}, S〉 7→
〈
B =



a1 a2 · · · an
2 0 · · · 0

0 2
. . .

...
...

. . .
. . . 0

0 · · · 0 2

 , t =


S
1
1
...
1

 , r =
√
n
〉

If 〈{a1, . . . , an}, S〉 ∈ SubsetSum then suppose that
∑

i∈A ai = S . Now
take y = Bz where z is vector with its j-th coordinate equal to 1 if j ∈ A
and 0 otherwise. Then ‖Bz − t‖ = ‖[0 ± 1 . . . ± 1]T‖ =

√
n and so

〈B, t, r〉 ∈ PromiseCVP1.

If 〈B, t, r〉 ∈ PromiseCVP1. Assume x ∈ L(B) such that ‖x − t‖ ≤
√
n

The last n coordinates are even, so subtracting 1 gives at least
√
n. It

must be the case that the first coordinate is S .

Introduction to Lattices

Complexity Results

PromiseCVP1 is NP Complete

We show that SubsetSum reduces to PromiseCVP1. We map an instance of
Subset Sum as follows

〈{a1, . . . , an}, S〉 7→
〈
B =



a1 a2 · · · an
2 0 · · · 0

0 2
. . .

...
...

. . .
. . . 0

0 · · · 0 2

 , t =


S
1
1
...
1

 , r =
√
n
〉

If 〈{a1, . . . , an}, S〉 ∈ SubsetSum then suppose that
∑

i∈A ai = S . Now
take y = Bz where z is vector with its j-th coordinate equal to 1 if j ∈ A
and 0 otherwise. Then ‖Bz − t‖ = ‖[0 ± 1 . . . ± 1]T‖ =

√
n and so

〈B, t, r〉 ∈ PromiseCVP1.

If 〈B, t, r〉 ∈ PromiseCVP1. Assume x ∈ L(B) such that ‖x − t‖ ≤
√
n

The last n coordinates are even, so subtracting 1 gives at least
√
n. It

must be the case that the first coordinate is S .

Introduction to Lattices

Complexity Results

PromiseCVP1 is NP Complete

We show that SubsetSum reduces to PromiseCVP1. We map an instance of
Subset Sum as follows

〈{a1, . . . , an}, S〉 7→
〈
B =



a1 a2 · · · an
2 0 · · · 0

0 2
. . .

...
...

. . .
. . . 0

0 · · · 0 2

 , t =


S
1
1
...
1

 , r =
√
n
〉

If 〈{a1, . . . , an}, S〉 ∈ SubsetSum then suppose that
∑

i∈A ai = S . Now
take y = Bz where z is vector with its j-th coordinate equal to 1 if j ∈ A
and 0 otherwise. Then ‖Bz − t‖ = ‖[0 ± 1 . . . ± 1]T‖ =

√
n and so

〈B, t, r〉 ∈ PromiseCVP1.

If 〈B, t, r〉 ∈ PromiseCVP1. Assume x ∈ L(B) such that ‖x − t‖ ≤
√
n

The last n coordinates are even, so subtracting 1 gives at least
√
n. It

must be the case that the first coordinate is S .

Introduction to Lattices

Complexity Results

PromiseCVP1 is NP Complete

We show that SubsetSum reduces to PromiseCVP1. We map an instance of
Subset Sum as follows

〈{a1, . . . , an}, S〉 7→
〈
B =



a1 a2 · · · an
2 0 · · · 0

0 2
. . .

...
...

. . .
. . . 0

0 · · · 0 2

 , t =


S
1
1
...
1

 , r =
√
n
〉

If 〈{a1, . . . , an}, S〉 ∈ SubsetSum then suppose that
∑

i∈A ai = S . Now
take y = Bz where z is vector with its j-th coordinate equal to 1 if j ∈ A
and 0 otherwise. Then ‖Bz − t‖ = ‖[0 ± 1 . . . ± 1]T‖ =

√
n and so

〈B, t, r〉 ∈ PromiseCVP1.

If 〈B, t, r〉 ∈ PromiseCVP1. Assume x ∈ L(B) such that ‖x − t‖ ≤
√
n

The last n coordinates are even, so subtracting 1 gives at least
√
n. It

must be the case that the first coordinate is S .

Introduction to Lattices

Complexity Results

PromiseCVP1 is NP Complete

We show that SubsetSum reduces to PromiseCVP1. We map an instance of
Subset Sum as follows

〈{a1, . . . , an}, S〉 7→
〈
B =



a1 a2 · · · an
2 0 · · · 0

0 2
. . .

...
...

. . .
. . . 0

0 · · · 0 2

 , t =


S
1
1
...
1

 , r =
√
n
〉

If 〈{a1, . . . , an}, S〉 ∈ SubsetSum then suppose that
∑

i∈A ai = S . Now
take y = Bz where z is vector with its j-th coordinate equal to 1 if j ∈ A
and 0 otherwise. Then ‖Bz − t‖ = ‖[0 ± 1 . . . ± 1]T‖ =

√
n and so

〈B, t, r〉 ∈ PromiseCVP1.

If 〈B, t, r〉 ∈ PromiseCVP1. Assume x ∈ L(B) such that ‖x − t‖ ≤
√
n

The last n coordinates are even, so subtracting 1 gives at least
√
n. It

must be the case that the first coordinate is S .

Introduction to Lattices

Complexity Results

Decision and Search CVP

We will show that we can solve the search problem given an oracle for
the decisional problem.

We first find the length of the closest vector r .

We use binary search in [0,R] where R =
∑n

i=1 ‖bi‖.
We have R2 possibilities since we deal with integers.

We need 2 logR queries to the oracle (polynomial).

Note that if we find the closest vector to t + v for v ∈ L we are
done.

Introduction to Lattices

Complexity Results

Decision and Search CVP

We will show that we can solve the search problem given an oracle for
the decisional problem.

We first find the length of the closest vector r .

We use binary search in [0,R] where R =
∑n

i=1 ‖bi‖.
We have R2 possibilities since we deal with integers.

We need 2 logR queries to the oracle (polynomial).

Note that if we find the closest vector to t + v for v ∈ L we are
done.

Introduction to Lattices

Complexity Results

Decision and Search CVP

We will show that we can solve the search problem given an oracle for
the decisional problem.

We first find the length of the closest vector r .

We use binary search in [0,R] where R =
∑n

i=1 ‖bi‖.

We have R2 possibilities since we deal with integers.

We need 2 logR queries to the oracle (polynomial).

Note that if we find the closest vector to t + v for v ∈ L we are
done.

Introduction to Lattices

Complexity Results

Decision and Search CVP

We will show that we can solve the search problem given an oracle for
the decisional problem.

We first find the length of the closest vector r .

We use binary search in [0,R] where R =
∑n

i=1 ‖bi‖.
We have R2 possibilities since we deal with integers.

We need 2 logR queries to the oracle (polynomial).

Note that if we find the closest vector to t + v for v ∈ L we are
done.

Introduction to Lattices

Complexity Results

Decision and Search CVP

We will show that we can solve the search problem given an oracle for
the decisional problem.

We first find the length of the closest vector r .

We use binary search in [0,R] where R =
∑n

i=1 ‖bi‖.
We have R2 possibilities since we deal with integers.

We need 2 logR queries to the oracle (polynomial).

Note that if we find the closest vector to t + v for v ∈ L we are
done.

Introduction to Lattices

Complexity Results

Decision and Search CVP

We will show that we can solve the search problem given an oracle for
the decisional problem.

We first find the length of the closest vector r .

We use binary search in [0,R] where R =
∑n

i=1 ‖bi‖.
We have R2 possibilities since we deal with integers.

We need 2 logR queries to the oracle (polynomial).

Note that if we find the closest vector to t + v for v ∈ L we are
done.

Introduction to Lattices

Complexity Results

The iterative step of the reduction

We iteratively make sparser the lattice while maintaining three properties

1 L(B ′) is a sublattice of L(B).

2 t ′ = t + v for v ∈ L(B).

3 dist(L(B ′), t ′) = r

The iterative step (for b1) is the following

Set B ′ = [2b1 b2 . . . bn]. We take a sublattice with half the points.

Using the oracle, if dist(L(B)′, t) ≤ r we set t ′ = t else t ′ = t − b1.

We have that L(B) = L(B ′) ∪ L(B ′ + b1). So the distance to from t to
the new subblatice or the shifted sublattice is r .

Introduction to Lattices

Complexity Results

The iterative step of the reduction

We iteratively make sparser the lattice while maintaining three properties

1 L(B ′) is a sublattice of L(B).

2 t ′ = t + v for v ∈ L(B).

3 dist(L(B ′), t ′) = r

The iterative step (for b1) is the following

Set B ′ = [2b1 b2 . . . bn]. We take a sublattice with half the points.

Using the oracle, if dist(L(B)′, t) ≤ r we set t ′ = t else t ′ = t − b1.

We have that L(B) = L(B ′) ∪ L(B ′ + b1). So the distance to from t to
the new subblatice or the shifted sublattice is r .

Introduction to Lattices

Complexity Results

The iterative step of the reduction

We iteratively make sparser the lattice while maintaining three properties

1 L(B ′) is a sublattice of L(B).

2 t ′ = t + v for v ∈ L(B).

3 dist(L(B ′), t ′) = r

The iterative step (for b1) is the following

Set B ′ = [2b1 b2 . . . bn]. We take a sublattice with half the points.

Using the oracle, if dist(L(B)′, t) ≤ r we set t ′ = t else t ′ = t − b1.

We have that L(B) = L(B ′) ∪ L(B ′ + b1). So the distance to from t to
the new subblatice or the shifted sublattice is r .

Introduction to Lattices

Complexity Results

The iterative step of the reduction

We iteratively make sparser the lattice while maintaining three properties

1 L(B ′) is a sublattice of L(B).

2 t ′ = t + v for v ∈ L(B).

3 dist(L(B ′), t ′) = r

The iterative step (for b1) is the following

Set B ′ = [2b1 b2 . . . bn]. We take a sublattice with half the points.

Using the oracle, if dist(L(B)′, t) ≤ r we set t ′ = t else t ′ = t − b1.

We have that L(B) = L(B ′) ∪ L(B ′ + b1). So the distance to from t to
the new subblatice or the shifted sublattice is r .

Introduction to Lattices

Complexity Results

The iterative step of the reduction

We iteratively make sparser the lattice while maintaining three properties

1 L(B ′) is a sublattice of L(B).

2 t ′ = t + v for v ∈ L(B).

3 dist(L(B ′), t ′) = r

The iterative step (for b1) is the following

Set B ′ = [2b1 b2 . . . bn]. We take a sublattice with half the points.

Using the oracle, if dist(L(B)′, t) ≤ r we set t ′ = t else t ′ = t − b1.

We have that L(B) = L(B ′) ∪ L(B ′ + b1). So the distance to from t to
the new subblatice or the shifted sublattice is r .

Introduction to Lattices

Complexity Results

The iterative step of the reduction

We iteratively make sparser the lattice while maintaining three properties

1 L(B ′) is a sublattice of L(B).

2 t ′ = t + v for v ∈ L(B).

3 dist(L(B ′), t ′) = r

The iterative step (for b1) is the following

Set B ′ = [2b1 b2 . . . bn]. We take a sublattice with half the points.

Using the oracle, if dist(L(B)′, t) ≤ r we set t ′ = t else t ′ = t − b1.

We have that L(B) = L(B ′) ∪ L(B ′ + b1). So the distance to from t to
the new subblatice or the shifted sublattice is r .

Introduction to Lattices

Complexity Results

The iterative step of the reduction

We iteratively make sparser the lattice while maintaining three properties

1 L(B ′) is a sublattice of L(B).

2 t ′ = t + v for v ∈ L(B).

3 dist(L(B ′), t ′) = r

The iterative step (for b1) is the following

Set B ′ = [2b1 b2 . . . bn]. We take a sublattice with half the points.

Using the oracle, if dist(L(B)′, t) ≤ r we set t ′ = t else t ′ = t − b1.

We have that L(B) = L(B ′) ∪ L(B ′ + b1). So the distance to from t to
the new subblatice or the shifted sublattice is r .

Introduction to Lattices

Complexity Results

The reduction

We perform the iterative step k = n + log r times for each
coordinates.

Finally the basis of the lattice is of the form B∗ = [2kb1 . . . 2kbn].

We know that dist(B∗, t∗) = r .

Note that λ1(L(B∗)) ≥ 2k = 2n · r .

The second closest vector to t∗ is at distance at least
2nr − r ≥ 2n−1 · r .

So if we run the nearest plane algorithm we get the closest vector.

From there we can construct t for the initial lattice.

We dont know how to generalize this for the gap versions of the problems.

Introduction to Lattices

Complexity Results

The reduction

We perform the iterative step k = n + log r times for each
coordinates.

Finally the basis of the lattice is of the form B∗ = [2kb1 . . . 2kbn].

We know that dist(B∗, t∗) = r .

Note that λ1(L(B∗)) ≥ 2k = 2n · r .

The second closest vector to t∗ is at distance at least
2nr − r ≥ 2n−1 · r .

So if we run the nearest plane algorithm we get the closest vector.

From there we can construct t for the initial lattice.

We dont know how to generalize this for the gap versions of the problems.

Introduction to Lattices

Complexity Results

The reduction

We perform the iterative step k = n + log r times for each
coordinates.

Finally the basis of the lattice is of the form B∗ = [2kb1 . . . 2kbn].

We know that dist(B∗, t∗) = r .

Note that λ1(L(B∗)) ≥ 2k = 2n · r .

The second closest vector to t∗ is at distance at least
2nr − r ≥ 2n−1 · r .

So if we run the nearest plane algorithm we get the closest vector.

From there we can construct t for the initial lattice.

We dont know how to generalize this for the gap versions of the problems.

Introduction to Lattices

Complexity Results

The reduction

We perform the iterative step k = n + log r times for each
coordinates.

Finally the basis of the lattice is of the form B∗ = [2kb1 . . . 2kbn].

We know that dist(B∗, t∗) = r .

Note that λ1(L(B∗)) ≥ 2k = 2n · r .

The second closest vector to t∗ is at distance at least
2nr − r ≥ 2n−1 · r .

So if we run the nearest plane algorithm we get the closest vector.

From there we can construct t for the initial lattice.

We dont know how to generalize this for the gap versions of the problems.

Introduction to Lattices

Complexity Results

The reduction

We perform the iterative step k = n + log r times for each
coordinates.

Finally the basis of the lattice is of the form B∗ = [2kb1 . . . 2kbn].

We know that dist(B∗, t∗) = r .

Note that λ1(L(B∗)) ≥ 2k = 2n · r .

The second closest vector to t∗ is at distance at least
2nr − r ≥ 2n−1 · r .

So if we run the nearest plane algorithm we get the closest vector.

From there we can construct t for the initial lattice.

We dont know how to generalize this for the gap versions of the problems.

Introduction to Lattices

Complexity Results

The reduction

We perform the iterative step k = n + log r times for each
coordinates.

Finally the basis of the lattice is of the form B∗ = [2kb1 . . . 2kbn].

We know that dist(B∗, t∗) = r .

Note that λ1(L(B∗)) ≥ 2k = 2n · r .

The second closest vector to t∗ is at distance at least
2nr − r ≥ 2n−1 · r .

So if we run the nearest plane algorithm we get the closest vector.

From there we can construct t for the initial lattice.

We dont know how to generalize this for the gap versions of the problems.

Introduction to Lattices

Complexity Results

The reduction

We perform the iterative step k = n + log r times for each
coordinates.

Finally the basis of the lattice is of the form B∗ = [2kb1 . . . 2kbn].

We know that dist(B∗, t∗) = r .

Note that λ1(L(B∗)) ≥ 2k = 2n · r .

The second closest vector to t∗ is at distance at least
2nr − r ≥ 2n−1 · r .

So if we run the nearest plane algorithm we get the closest vector.

From there we can construct t for the initial lattice.

We dont know how to generalize this for the gap versions of the problems.

Introduction to Lattices

Complexity Results

The reduction

We perform the iterative step k = n + log r times for each
coordinates.

Finally the basis of the lattice is of the form B∗ = [2kb1 . . . 2kbn].

We know that dist(B∗, t∗) = r .

Note that λ1(L(B∗)) ≥ 2k = 2n · r .

The second closest vector to t∗ is at distance at least
2nr − r ≥ 2n−1 · r .

So if we run the nearest plane algorithm we get the closest vector.

From there we can construct t for the initial lattice.

We dont know how to generalize this for the gap versions of the problems.

Introduction to Lattices

Complexity Results

PromiseSVPγ is not harder than PromiseCVPγ

SVP looks like CVP with origin as the target vector.

This cannot be directly utilized to solve SVP with a CVP oracle.

The origin is always a lattice point and so the oracle will always
return it.

We need to delete it somehow.

If we delete a lattice point we no longer have a lattice.

So in the reduction, we delete a set of lattice points.

Introduction to Lattices

Complexity Results

PromiseSVPγ is not harder than PromiseCVPγ

SVP looks like CVP with origin as the target vector.

This cannot be directly utilized to solve SVP with a CVP oracle.

The origin is always a lattice point and so the oracle will always
return it.

We need to delete it somehow.

If we delete a lattice point we no longer have a lattice.

So in the reduction, we delete a set of lattice points.

Introduction to Lattices

Complexity Results

PromiseSVPγ is not harder than PromiseCVPγ

SVP looks like CVP with origin as the target vector.

This cannot be directly utilized to solve SVP with a CVP oracle.

The origin is always a lattice point and so the oracle will always
return it.

We need to delete it somehow.

If we delete a lattice point we no longer have a lattice.

So in the reduction, we delete a set of lattice points.

Introduction to Lattices

Complexity Results

PromiseSVPγ is not harder than PromiseCVPγ

SVP looks like CVP with origin as the target vector.

This cannot be directly utilized to solve SVP with a CVP oracle.

The origin is always a lattice point and so the oracle will always
return it.

We need to delete it somehow.

If we delete a lattice point we no longer have a lattice.

So in the reduction, we delete a set of lattice points.

Introduction to Lattices

Complexity Results

PromiseSVPγ is not harder than PromiseCVPγ

SVP looks like CVP with origin as the target vector.

This cannot be directly utilized to solve SVP with a CVP oracle.

The origin is always a lattice point and so the oracle will always
return it.

We need to delete it somehow.

If we delete a lattice point we no longer have a lattice.

So in the reduction, we delete a set of lattice points.

Introduction to Lattices

Complexity Results

PromiseSVPγ is not harder than PromiseCVPγ

SVP looks like CVP with origin as the target vector.

This cannot be directly utilized to solve SVP with a CVP oracle.

The origin is always a lattice point and so the oracle will always
return it.

We need to delete it somehow.

If we delete a lattice point we no longer have a lattice.

So in the reduction, we delete a set of lattice points.

Introduction to Lattices

Complexity Results

The Reduction

Our input is a basis B and an r .

We try to distinguish between the cases λ1 ≤ r and λ1 > γ · r .

We create n new subblattices with bases
Bi = [b1 . . . bi−1 2bi bi+1 . . . bn]

We run the oracle for inputs 〈Bi , bi , r〉.
If any returns YES we return YES otherwise we return NO.

Introduction to Lattices

Complexity Results

The Reduction

Our input is a basis B and an r .

We try to distinguish between the cases λ1 ≤ r and λ1 > γ · r .

We create n new subblattices with bases
Bi = [b1 . . . bi−1 2bi bi+1 . . . bn]

We run the oracle for inputs 〈Bi , bi , r〉.
If any returns YES we return YES otherwise we return NO.

Introduction to Lattices

Complexity Results

The Reduction

Our input is a basis B and an r .

We try to distinguish between the cases λ1 ≤ r and λ1 > γ · r .

We create n new subblattices with bases
Bi = [b1 . . . bi−1 2bi bi+1 . . . bn]

We run the oracle for inputs 〈Bi , bi , r〉.
If any returns YES we return YES otherwise we return NO.

Introduction to Lattices

Complexity Results

The Reduction

Our input is a basis B and an r .

We try to distinguish between the cases λ1 ≤ r and λ1 > γ · r .

We create n new subblattices with bases
Bi = [b1 . . . bi−1 2bi bi+1 . . . bn]

We run the oracle for inputs 〈Bi , bi , r〉.

If any returns YES we return YES otherwise we return NO.

Introduction to Lattices

Complexity Results

The Reduction

Our input is a basis B and an r .

We try to distinguish between the cases λ1 ≤ r and λ1 > γ · r .

We create n new subblattices with bases
Bi = [b1 . . . bi−1 2bi bi+1 . . . bn]

We run the oracle for inputs 〈Bi , bi , r〉.
If any returns YES we return YES otherwise we return NO.

Introduction to Lattices

Complexity Results

Correctness of the Reduction

We examine the two cases

if (B, r) 6∈ PromiseSVPγ then λ1(L(B)) > γ · r . So any lattice
vector v has length ‖v‖ > γ · r . Now suppose that for some i the
oracle returned YES. Then there exists v ∈ L(Bi) s.t. ‖v − bi‖ ≤ r .
But this is a lattice point in L(B) which is a contradiction.

if (B, r) ∈ PromiseSVPγ then λ1(L(B)) ≤ r . Let v be the smallest
vector. Then v = a1b1 + . . .+ anbn for some ai odd. Then
bi + v ∈ L(Bi) and its distance from bi is less than r so the oracle
must return YES.

Introduction to Lattices

Complexity Results

Correctness of the Reduction

We examine the two cases

if (B, r) 6∈ PromiseSVPγ then λ1(L(B)) > γ · r . So any lattice
vector v has length ‖v‖ > γ · r . Now suppose that for some i the
oracle returned YES. Then there exists v ∈ L(Bi) s.t. ‖v − bi‖ ≤ r .
But this is a lattice point in L(B) which is a contradiction.

if (B, r) ∈ PromiseSVPγ then λ1(L(B)) ≤ r . Let v be the smallest
vector. Then v = a1b1 + . . .+ anbn for some ai odd. Then
bi + v ∈ L(Bi) and its distance from bi is less than r so the oracle
must return YES.

Introduction to Lattices

Complexity Results

Correctness of the Reduction

We examine the two cases

if (B, r) 6∈ PromiseSVPγ then λ1(L(B)) > γ · r . So any lattice
vector v has length ‖v‖ > γ · r . Now suppose that for some i the
oracle returned YES. Then there exists v ∈ L(Bi) s.t. ‖v − bi‖ ≤ r .
But this is a lattice point in L(B) which is a contradiction.

if (B, r) ∈ PromiseSVPγ then λ1(L(B)) ≤ r . Let v be the smallest
vector. Then v = a1b1 + . . .+ anbn for some ai odd. Then
bi + v ∈ L(Bi) and its distance from bi is less than r so the oracle
must return YES.

Introduction to Lattices

Complexity Results

The end!

Thank you! Questions?

	Lattices in Rm
	The LLL Algorithm
	Babai's Nearest Plane Algorithm
	Complexity Results

