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Setting and Outline

Question

What happens when selfish users share resources?

Model
Symmetric network congestion games with atomic players.

s− t network and players with unit unsplittable demands.
Players route on minimum latency s− t paths :
Pure Nash Equilibrium (PNE).
PNE may fail to optimize performance (total latency).

Objectives

Quantify the inefficiency of PNE (under natural assumptions).
Mitigate (or eliminate) the inefficiency of PNE.
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Symmetric Network Congestion Games

Symmetric network congestion game Γ(N,G(V,E), (de)e∈E) :
Set N of n players, each controls an unsplittable unit demand.
Directed network G(V,E) with source s and sink t.
Set E of m edges (resources) where demands are assigned.
Common set of players’ actions : set P of s− t paths in G.

− Parallel links : each path consists of a single edge.

Non-decreasing latency function de : IN 7→ IR≥0 on each edge e.

− Linear game: de(x) = aex + be, ae, be ≥ 0, ∀e ∈ E.
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Pure Nash Equilibrium

Configuration σ = (σ1, . . . , σn) : each player i selects path σi ∈ P .
Congestion of edge e in σ: σe = |{i ∈ N : e ∈ σi}|.
Latency of edge e in σ: de(σe).
Latency of player i in σ: ci(σ) =

∑
e∈σi

de(σe).

Pure Nash Equilibrium (PNE)

Stable state σ where no player can improve own latency unilaterally:
∀i ∈ N, ∀s ∈ P , ci(σ) ≤ ci(σ−i, s)

Potential Function [Ros 73]

PNE correspond to local optima of Φ(σ) =
∑

e∈E
∑σe

i=0 de(i)
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Inefficiency due to Selfishness

Optimal Configuration

o = (o1, . . . , on) minimizes total latency : C(o) =
∑

e∈E σede(σe)

Price of Anarchy [Kouts Papa 99]

Game Γ : PoA(Γ) = max σ∈PNE(Γ)C(σ)/C(o)
Class G : PoA(G) = supΓ∈G PoA(Γ)

Price of Stability [Anshel DKTWR 04]

Game Γ : PoS(Γ) = min σ∈PNE(Γ)C(σ)/C(o)
Class G : PoS(G) = supΓ∈G PoS(Γ)
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Price of Anarchy and Stability
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Price of Anarchy and Stability

Non-atomic games: infinite #players with infinitesimal demand.

PoA for non-atomic games with latencies in class D
PoA = α(D) [Rough03]

4/3 for linear latencies, Θ( p
ln p ) for polynomials of degree p.

PoA for atomic games with unsplittable demands

Linear latencies: PoA = 2.5 [AzarAweEpst05], [ChristKouts05], [AlandDGMS06]

Polynomial latencies of degree p: PoA = pΘ(p)

Parallel links : PoA = α(D) [LückMMR04], [CaragKaklKanel07], [Fot07]

Extension-parallel networks : PoA = α(D) [Fotakis08]

Price of Stability

Linear latencies: PoS = 1 +
√

3/3 [ChristKouts05], [CaragKaklamKanel07]

s− t networks : PoS = α(D) [Fotakis08]
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Reducing the Price of Anarchy

Network Design

Detection (and elimination) of Braess’s paradox [Rough01]

Difficult if the network is operational, computationally hard
Tractable for several interesting cases [FotaKapoSpir 09]

Coordination mechanisms
Modify the players’ costs [ChristKoutsNanav 04]

Scheduling [ImmorLMS 05],[AzarJainMir 08], [Caragiannis 09]

Connection games : priority cost-sharing better than fair [CRV08]

Significant improvement. Fairness and implementation issues.
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Reducing the Price of Anarchy

Stackelberg routing

Exploit the presence of coordinated players [KorLazOrd 97]

Improvement depends on the fraction of coordinated players.
No system modifications are required.

Resource pricing

Introduce economic disincentives (refundable tolls).

Tolls increase players’ disutility, large tolls may be required.
Tolls known to enforce optimal configuration for non-atomic
games.
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Stackelberg Routing

Model
Both selfish and coordinated players are present.
Leader determines paths of coordinated players
to optimize performance.
Selfish players (followers) seek to minimize their own latency
and reach a pure Nash equilibrium.

Stackelberg Strategy

Algorithm allocating a path to each coordinated player.
Objective: lead the selfish players to a good PNE.
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Stackelberg Strategies

Γ(N,G(V,E), (de)e∈E) : k coordinated and n− k selfish players.
Fraction of coordinated players : γ = k/n

Optimal configuration o = (o1, . . . , on)
Poly-time for symmetric network games with convex latencies.

Coordinated players are assigned to k optimal paths .
Stackelberg strategy selects L ⊆ N, |L| = k = γn
Stackelberg configuration s(L) = (oi)i∈L

Stackelberg congestion se(L) = |{i ∈ L : e ∈ oi}|

Game Γ̃L(N \ L,G(V,E), (d̃e)e∈E), with d̃e(x) = de(x + se(L))
Selfish players : worst PNE σ(L) of maximum C(σ(L) + s(L))

Price of Anarchy

max
σ(L)∈PNE(Γ̃L)

C(σ(L) + s(L))/C(o)
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Stackelberg Strategies

Computing the best strategy is NP-complete even for parallel links
and linear latencies [Roughgarden 02].

Largest Latency First – LLF [Rough02]

Coordinated players to optimal paths of largest latency.
If c1(o) ≥ · · · ≥ cn(o), then L = {1, . . . , k} .

Scale [Rough02]

Random set L , |L| = k , with probability 1/
(n

k

)
.

Each resource e gets γoe coordinated players on expectation.

Cover

Atomic games when k large enough (e.g. k ≥ m) .
Integer λ : each e gets ≥ min{λ, oe} coordinated players.
L is computed greedily so that min{λ, oe} ≤ se(L) ≤ oe for all e.
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Stackelberg Strategies: Examples

s t18 
players

x

2x+16
2x+16
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s t18 
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2
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1
1
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Optimal
Total lat.: 255

s t18 
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0

Worst PNE
Total lat.: 324

Scale : IE[C(s + σ)] ≥ 284.98
−With probability ≥ 0.572, C(s + σ) ≥ 292
−With probability ≥ 0.883, C(s + σ) ≥ 279
−With probability ≥ 0.987, C(s + σ) ≥ 268
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s t18 
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2
2

1
1
0

LLF, 6 players
Total lat.: 260

Scale : IE[C(s + σ)] ≥ 284.98
−With probability ≥ 0.572, C(s + σ) ≥ 292
−With probability ≥ 0.883, C(s + σ) ≥ 279
−With probability ≥ 0.987, C(s + σ) ≥ 268
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Stackelberg Strategies: Examples

s t10 
players

x x

3x+3

x+1

x+2

s t10 
players

7 6

3

1

4

Optimal, total lat: 147
Upper:  6x13
Middle: 1x15
Lower: 3x18

s t10 
players

8 7

2

1

3

PNE, total lat.: 148
Upper:  7x15
Middle: 1x15
Lower: 2x14

Scale : IE[C(s + σ)] ≥ 148.0083
−With probability 119

120 , C(s + σ) = 148
−With probability 1

120 , C(s + σ) = 149
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Work on Non-Atomic Games

PoA for Stackelberg Routing on Parallel Links [Rough02]

NP-complete to compute the best Stackelberg strategy.
PoALLF is 1/γ for general and 4/(3 + γ) for linear latencies.

∃ s− t networks with unbounded PoA under any strategy [BHS08]

PoA of LLF and Scale

PoALLF ≤ γ + (1− γ)α(D) for parallel links [Swamy07]

PoALLF ≤ 1 + 1/γ for series-parallel networks [Sw07], [CorStMos07]

PoA of LLF and Scale for linear congestion games [KarakKolliop06]

Non-PoA Results
FPTAS for parallel links with polynomial latencies [KumMar02]

Smallest fraction of coordinated players for optimality [KapSpir06]

Smallest fraction of coordinated players to improve [SharWilliam07]
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Our Work on Atomic Games

Games with Linear Latencies and Arbitrary Actions

Upper bounds on PoA of LLF, Scale, Cover, and combinations.
Nearly matching lower bound on PoA of LLF .
Lower bound on PoA of any randomized Stackelberg strategy.

Games on Parallel Links with Arbitrary Latencies

Same upper bounds on PoA of LLF as for non-atomic games.
For arbitrary latencies, PoALLF ≤ 1/γ
For latencies in class D, PoALLF ≤ γ + (1− γ)α(D)
For linear latencies, PoALLF ≤ (4− γ)/3 .
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Linear Games: Upper Bounds

Notation : Stackelberg configuration : s, se
Worst Nash equilibrium : σ, σe
Worst configuration : f = s + σ, fe = se + σe

Approach similar to [AzarAwerEpst 05], [ChristKouts 05].

Nash inequality for selfish player i

ci(f ) ≤
∑

e∈oi
(ae(fe + 1) + be)

Optimal action for coordinated player j

cj(f ) =
∑

e∈oj
(aefe + be)

Putting everything together

C(f ) ≤
∑

e∈E(ae(oefe + oe− se) + beoe)

Bound rhs in terms of C(f ) and C(o) using strategy’s properties.
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Linear Games: Upper Bound for LLF
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Linear Games: Upper and Lower Bound for LLF
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Linear Games: Upper and Lower Bound for Scale
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Linear Games: Upper Bound for Cover

PoA of Cover tends to PoA of non-atomic game as λ grows

Linear latencies : PoACover ≤ 4λ−1
3λ−1

Linear latencies without offset : PoACover ≤ 1 + 1
2λ

Parallel links, linear latencies, no offset : PoACover ≤ 1 + 1
4(λ+1)2−1
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Linear Games: Upper Bound for Cover-Scale
If n/m large and k ≥ m, Cover-Scale achieves better PoA !

Cover assigns λm players so that min{λ, oe} ≤ sC
e ≤ oe for each e,

λ ≤bk/mc any integer.
Scale assigns k− λm players randomly wrt o− sC .

n/m = 10
k ≥ m
γ = k/n ≥ 0.1
λ = 1
−− Scale
−− Cover-Scale
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Linear Games: Upper Bound for LLF-Cover
If n/m large and k ≥ m, LLF-Cover achieves better PoA !

LLF assigns k− λm players to the largest latency actions in o.
Cover assigns λm players so that min{λ, oe − sL

e } ≤ sC
e ≤ oe − sL

e
for each e, λ ≤bk/mc any integer.

n/m = 10
k ≥ m
γ = k/n ≥ 0.1
λ = 1
−− LLF
−− LLF-Cover
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Refundable Tolls

Economic (dis)incentives (tolls) to improve total latency.
Players minimize latency + tolls and reach better PNE.
Objective : moderate and efficiently computable tolls leading
players to PNE of optimal total latency.

Symmetric network congestion game Γ(N,G(V,E), (de)e∈E)
Toll function τ : E 7→ IR≥0 assigns toll τe ≥ 0 to every edge e.

Modified congestion game with tolls Γτ (N,G(V,E), (de)e∈E)

Cost of edge e in configuration σ : de(σe) = de(σe) + τe

Cost of player i in configuration σ : ci(σ) =
∑

e∈σi
(de(σe) + τe)

Refundable tolls increase players’ cost but not total latency

Admin seeks to minimize total latency C(σ) =
∑

e∈E σede(σe)

Tolls τ such that optimal o of Γ is some (the worst) PNE of Γτ
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Enforceable Congestions

Configuration f weakly enforceable by tolls τ

Every configuration σ with σe = fe on all e ∈ E is a PNE of Γτ
Weakly optimal tolls τ weakly enforce optimal o : PoS = 1

Configuration f strongly enforceable by tolls τ

Configuration σ is a PNE of Γτ iff σe = fe for all e ∈ E
Strongly enforceable : weakly enforceable and unique PNE of Γτ
(Strongly) optimal tolls τ strongly enforce optimal o : PoA = 1
Weak and strong optimality equivalent for non-atomic games.
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Refundable Tolls: Example
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Refundable Tolls for Non-Atomic Games

Marginal cost tolls for optimal : de(oe) = de(oe) + oed′e(oe)

Optimal of Γ iff Nash equilibrium of Γτ
Not weakly enforce optimal for atomic games.

Optimal tolls for heterogeneous players

Players have different latency vs. tolls valuation.
Existence for s− t networks and computation for finite #types
[ColeDodisRough 03]

Existence of moderate tolls for s− t networks and computation
for series-parallel nets and infinite #types [Flei 04]

Efficient computation follows from LP duality [FJM 04], [KaraKoll 04]
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Refundable Tolls for Atomic Games

Homogeneous players, linear latencies [CaragKaklKanel 06]

Simple non-symmetric game with PoA ≥ 1.2 for any tolls.
∃non-symmetric games not admitting optimal tolls!

Simple optimal tolls for parallel links
Efficiently computable tolls reducing PoA to 2 + ε
Not strongly optimal for series-parallel networks.
Optimal tolls for s− t networks other than parallel links?
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Cost-Balancing Tolls

Cost-balancing tolls τ for f

∀p ∈ P with mine∈p{fe} > 0 and ∀p′ ∈ P ,∑
e∈p

(de(fe) + τe) ≤
∑
e∈p′

(de(fe) + τe)

Any used path becomes min-cost path.

Any configuration σ with σe = fe for all e ∈ E is a PNE of Γτ
Configuration f weakly enforceable by cost-balancing tolls for it.
Which configurations admit cost-balancing tolls?
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Our Results on Cost-Balancing Tolls

Cost-balancing tolls

Computable in linear time for (acyclic) optimal configuration o
Weakly optimal for s− t networks (for heterogeneous players!).

Moderate : tolls paid by any player in o ≤max latency in o
Strongly optimal for series-parallel networks.
∃networks where not strongly optimal.
Heterogenous players : ∃parallel-link games not admitting
strongly optimal tolls.

Complexity of computing best optimal tolls

NP-hard even for linear games on series-parallel networks.
For 2-player linear games on series-parallel networks,
NP-hard to distinguish between PoA = 1 and PoA ≥ 1.2.
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Computing Cost-Balancing Tolls

Game Γ(N,G(V,E), (de)e∈E) and acyclic optimal o.

Eo = {e ∈ E : oe > 0} : G(V,Eo) is directed acyclic graph ( DAG )
∀ edge e ∈ Eo , edge length `e = de(oe)
Longest path tree from s in linear time
∀vertex u, `u = length of longest s− u path in Go

∀e = (u, v) ∈ Eo , τe = `v − (`u + de(oe))
∀e 6∈ Eo , τe = τmax ≥ `t

Non-negative tolls

∀e = (u, v) ∈ Eo , `v ≥ `u + de(oe)
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Social Ignorance in Congestion Games

Motivation
Players have partial information which depends on
their social context.
How does the social context affect inefficiency?

Ideas from Previous Work
A Bayesian approach to load balancing [GairMonTiem 08]

Social graph : player knows neighbors’ weights and probability
distribution for others’ [KoutsPanaSpir 07]

Some players are ignorant of the presence of others [KarKimViglXia 07]

Social context affects individual costs [AshlKrysTennen 08]
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Graphical Congestion Games

Graphical Congestion Games [BiloFaneFlamMosca 08]

Social graph G = (N,R). Each player / vertex has:
Full information about his social neighbors.
No information whatsoever about the remaining players.

Players select strategies based on presumed costs.

Consequences

Linear graphical games admit potential function (and PNE).
PoA ≤ n(∆(G) + 1)
PoS ≤ n
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Our Work on Graphical Congestion Games

Question

Which parameter of the social graph characterizes inefficiency
of PNE and the Nash dynamics (for weighted players too) ?

Our Answer

The independence number α(G) of the social graph G :

PoA ≤

{
3α(G)+7
3α(G)+1α

2(G) if α(G) < n
2 ,

2n(n− α(G) + 1) if α(G) ≥ n
2

α(G) ≤ PoS ≤ 2α(G)
Convergence to PNE not slower due to social ignorance
(what about faster?).
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Graphical Congestion Games

Configuration σ = (σ1, . . . , σn)

Presumed congestion of player i on e in σ:

σi
e = 1 + |{j ∈ N : e ∈ σj ∧ {i, j} ∈ R}|

Presumed latency of i on e in σ: de(σi
e)

Presumed latency of i in σ: pi(σ) =
∑

e∈σi
de(σi

e)

G(N, R)
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Graphical Congestion Games

Pure Nash Equilibrium (PNE) for Graphical Games

No player can improve own presumed latency unilaterally:

∀i ∈ N, ∀s ∈ P , pi(σ) ≤ pi(σ−i, s)

Potential Function for Linear Latencies

Φ(σ) =
P(σ) + U(σ)

2

where P(σ) =
∑n

i=1 pi(σ) and U(σ) =
∑n

i=1
∑

e∈σi
de(1)

Price of Anarchy for Graphical Games

Game Γ : PoA(Γ) = max σ∈PNE(Γ)C(σ)/C(o)
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Cost Approximation

Main Lemma

For any configuration σ, C(σ) ≤ α(G)P(σ)

Intuition

For edge e and configuration σ, let Ge(Ne(σ),Re(σ)) be social
subgraph induced by σe players on e in σ.
Worst case when Ge is made up of α(Ge) disjoint cliques each of
size k = σe/α(Ge).
Total actual cost for e in σ : Ce(σ) = aeσ

2
e + beσe

Total presumed cost for e in σ : Pe(σ) = σe[aek + be]
Since σe = kα(Ge), Ce(σ) ≤ α(Ge)Pe(σ)
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Directions for Further Research

Stackelberg strategies

Approximability of the best Stackelberg strategy.
Atomic games on parallel links: (F)PTAS ?
(Symmetric) network games even with linear latencies?

How much can LLF (or Scale) increase PoA and PoS ?

Tolls for Atomic Games
Which s− t network games admit strongly optimal tolls?

Impact of Social Ignorance

Realistic models for congestion games where players have
limited social interaction, and thus limited information.

One should model that after a strategy is realized, the player
becomes aware of its actual cost .

Does sparse social graphs facilitate convergence to PNE ?
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becomes aware of its actual cost .

Does sparse social graphs facilitate convergence to PNE ?
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Directions for Further Research

Bursty Players and Risk Aversion

Which way to work if A wants to be there by 9:00?

With probability ≈ 37%, A gets there at 8:30
With probability ≈ 37%, A gets there at 9:00
With probability ≈ 26%, A gets there after 9:30!

Reasonable and technically manageable model for
congestion games with stochastic and / or risk averse players.
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