Price of anarchy in auctions & the smoothness framework

Faidra Monachou

Algorithmic Game Theory 2016

CoReLab, NTUA

COMPLETE INFORMATION GAMES

Example: Chicken game

	stay	swerve
stay	(-10,-10)	(1,-1)
swerve	(-1,1)	(0,0)

The strategy profile (stay, swerve) is a mutual best response, a Nash equilibrium.

A Nash equilibrium in a game of *complete* information is a strategy profile where each player's strategy is a best response to the strategies of the other players as given by the strategy profile

- pure strategies : correspond directly to actions in the game
- mixed strategies: are randomizations over actions in the game

INCOMPLETE INFORMATION GAMES (AUCTIONS)

- Each agent has some private information (agent's valuation v_i) and this information affects the payoff of this agent in the game.
- **strategy** in a incomplete information auction = a function $b_i(\cdot)$ that maps an agent's type to any **bid** of the agent's possible bidding actions in the game

strategy
$$v_i \overset{b_i(\cdot)}{\Longrightarrow} b_i(v_i)$$
valuation bid

Example: Second Price Auction

A strategy of player i maps valuation to bid $b_i(v_i) = \text{"bid } v_i$ "

*This strategy is also truthful.

FIRST PRICE AUCTION OF A SINGLE ITEM

- a single item to sell
- n players each player i has a private valuation $v_i \sim F_i$ for the item.
- distribution F is known and valuations v_i are drawn independently

First Price Auction

- 1. the auction winner is the maximum bidder
- 2. the winner pays his bid

 \mathbf{F} is the product distribution $\mathbf{F} \equiv F_1 \times \cdots \times F_n$

Then, $F_{-i}|v_i=F_{-i}$

Player's goal: maximize utility = valuation-price paid

FIRST PRICE AUCTION: Symmetric

Two bidders, independent valuations with uniform distribution U([0,1])

value v_2 , bid b_2

If the cat bids half her value, how should you bid?

Your expected utility: $\mathbf{E}[u_1] = (v_1 - b_1) \cdot \mathbf{P}[you \ win]$

$$P[you\ win] = P[b_2 \le b_1] = 2b_1 \Rightarrow E[u_1] = 2v_1b_1 - 2b_1^2$$

Optimal bid:
$$\frac{d}{db_1}\mathbf{E}[u_1] = 0 \implies b_1 = \frac{v_1}{2}$$
 BNE

BAYES-NASH EQUILIBRIUM (BNE) + PRICE OF ANARCHY (PoA)

A Bayes-Nash equilibrium (BNE) is a strategy profile where if for all i $b_i(v_i)$ is a best response when other agents play $b_{-i}(v_{-i})$ with $v_{-i} \sim \mathbf{F_{-i}}|v_i$ (conditioned on v_i)

Price of Anarchy (PoA) = the worst-case ratio between the objective function value of an equilibrium and of an optimal outcome

Example of an auction objective function:

Social welfare = the valuation of the winner

FIRST PRICE AUCTION: Symmetric vs Non-Symmetric

Symmetric Distributions [two bidders U([0,1])]

- $b_1(v_1) = \frac{v_1}{2}$, $b_2(v_2) = \frac{v_2}{2}$ is BNE
- the player with the highest valuation wins in BNE ⇒ first-price auction maximizes social welfare

Non-Symmetric Distributions [two bidders $v_1 \sim U([0,1]), v_2 \sim U([0,2])$]

- $b_1(v_1) = \frac{2}{3v_1} \left(2 \sqrt{4 3v_1^2}\right)$, $b_2(v_2) = \frac{2}{3v_2} \left(-2 + \sqrt{4 + 3v_2^2}\right)$ is BNE
- player 1 may win in cases where $v_2 > v_1 \Rightarrow PoA>1$

MOTIVATION: Simple and... not-so-simple auctions

Simple! Single item second price auction

How *realistic* is the assumption that mechanisms run *in isolation*, as traditional mechanism design has considered?

COMPOSITION OF MECHANISMS

Simultaneous Composition of *m* Mechanisms

The player reports a bid at each mechanism M_i

Sequential Composition of *m* **Mechanisms**

The player can base the bid he submits at mechanism M_j on the *history* of the submitted bids in previous mechanisms.

Reducing analysis of complex setting to simple setting.

How to design mechanisms so that the efficiency guarantees for a **single** mechanism (when studied in isolation) carry over to the same or approximately the same guarantees for a market **composed** of such mechanisms?

Key question

What properties of local mechanisms guarantee global efficiency in a market composed of such mechanisms?

Conclusion for a simple setting X

proved under restriction P

Conclusion for a complex setting Y

SMOOTHNESS

Smooth auctions

An auction game is (λ, μ) -smooth if \exists a bidding strategy \mathbf{b}^* s.t. $\forall \mathbf{b}$

$$\sum_{i} u_{i} (b_{i}^{*}, b_{-i}) \geq \lambda \cdot OPT - \mu \sum_{i} p_{i}(\mathbf{b})$$

Smoothness is property of auction not equilibrium!

$$PoA = \frac{OPT(\mathbf{v})}{SW(\mathbf{b})}$$

SMOOTHNESS IMPLIES PoA [PNE]

(λ,μ) -smoothness $\Rightarrow PoA \leq \frac{\max(1,\,\mu)}{\lambda}$

THEOREM

The (λ, μ) -smoothness property of an auction implies that a Nash equilibrium strategy profile **b** satisfies $\max\{1, \mu\} SW(\mathbf{b}) \ge \lambda \cdot OPT$

Proof. Let **b**: a Nash strategy profile,

b*: a strategy profile that satisfies smoothness

b Nash strategy profile $\Rightarrow u_i(\mathbf{b}) \geq u_i(\mathbf{b}_i^*, b_{-i})$

Summing over all players: $\sum_{i} u_{i}(\mathbf{b}) \geq \sum_{i} u_{i}(b_{i}^{*}, b_{-i})$

By auction smoothness: $\sum_{i} u_{i}(\mathbf{b}) \geq \lambda \cdot OPT - \mu \sum_{i} p_{i}(\mathbf{b})$

$$\Rightarrow \sum_{i} u_{i}(\mathbf{b}) + \mu \sum_{i} p_{i}(\mathbf{b}) \geq \lambda \cdot OPT \Rightarrow \max\{1, \mu\} SW(\mathbf{b}) \geq \lambda \cdot OPT$$

A vector of strategies \mathbf{s} is said to be a Nash equilibrium if for each player i and each strategy s'_i :

$$u_i(\mathbf{s}) \geq u_i(s_i', s_{-i})$$

An auction game is (λ, μ) -smooth if \exists a bidding strategy \mathbf{b}^* s.t. $\forall \mathbf{b}$

$$\sum_{i} u_{i} (b_{i}^{*}, b_{-i}) \geq \lambda \cdot OPT - \mu \sum_{i} p_{i}(\mathbf{b})$$

SMOOTHNESS IMPLIES PoA [BNE!]

$$PoA = \frac{E[OPT(\mathbf{v})]}{E[SW(\mathbf{b}(\mathbf{v}))]}$$

$$(\lambda,\mu)$$
-smoothness $\Rightarrow BNE PoA \leq \frac{\max(1, \mu)}{\lambda}$

THEOREM: Generalization to Bayesian settings

The (λ, μ) -smoothness property of an auction (with an \mathbf{b}^* such that b_i^* depends only on the value of player i) implies that a Bayes-Nash equilibrium strategy profile \mathbf{b} satisfies $\max\{1, \mu\} \mathbf{E}[SW(\mathbf{b})] \ge \lambda \cdot \mathbf{E}[OPT]$

A vector of strategies **s** is said to be a **Bayes-Nash equilibrium** if for each player i and each strategy s'_i , maximizes utility (conditional on valuation v_i)

$$E_v[u_i(s)|v_i] \ge E_v[u_i(s'_i, s_{-i})|v_i]$$

Complete information PNE to BNE with correlated values: Extension Theorem 1

Conclusion for a simple setting X

POA extension theorem

Conclusion for a complex setting Y

Complete information Pure Nash Equilibrium $\mathbf{v} = (v_1, ..., v_n)$: common knowledge

$$PoA = \frac{OPT(\mathbf{v})}{SW(\mathbf{b})}$$

Incomplete information
Bayes-Nash Equilibrium
with asymmetric correlated
valuations

$$PoA = \frac{E[OPT(\mathbf{v})]}{E[SW(\mathbf{b}(\mathbf{v}))]}$$

FPA AND SMOOTHNESS

An auction game is (λ, μ) -smooth if \exists a bidding strategy **b*** s.t. ∀**b**

$$\sum_{i} u_{i} (b_{i}^{*}, b_{-i}) \geq \lambda \cdot OPT - \mu \sum_{i} p_{i}(\mathbf{b})$$

First Price Auction

of a single item is

 $(1-\frac{1}{o},1)$ -smooth

LEMMA

First Price Auction (complete information) of a single item is $(\frac{1}{2}, 1)$ -smooth

<u>Proof.</u> We'll prove that $\sum_i u_i (b_i^*, b_{-i}) \ge \frac{1}{2} OPT - \sum_i p_i(\mathbf{b})$.

Let's try the bidding strategy $b_i^* = \frac{v_i}{2}$.

Maximum valuation bidder: $j = \arg \max v_i$

- If j wins, $u_j = v_j b_i^*(v_j) = \frac{v_j}{2} \ge \frac{1}{2} v_j \sum_i p_i Q$
- If j loses, $u_j = 0$, and $\sum_i p_i(\mathbf{b}) = \max_i b_i > \frac{1}{2}$

$$\Rightarrow u_j = 0 > \frac{1}{2} v_j - \sum_i p_i(\mathbf{b}) .$$

For all other bidders $i \neq j$: $u_i(b_i^*, b_{-i}) \geq 0$.

Summing up over all players we get

$$\sum_{i} u_{i}(b_{i}^{*}, b_{-i}) \geq \frac{1}{2} v_{j} - \sum_{i} p_{i}(\mathbf{b}) = \frac{1}{2} OPT - \sum_{i} p_{i}(\mathbf{b})$$

COMPLETE INFORMATION FIRST PRICE AUCTION: PNE & Complete Information

LEMMA

Complete Information First Price Auction of a single item has $PoA \le 2$

Proof.

Each bidder *i* can deviate to $b_i = \frac{v_i}{2}$.

We prove that $SW(\mathbf{b}) \ge \frac{1}{2}OPT(\mathbf{v})$.

$$PoA = \frac{OPT(\mathbf{v})}{SW(\mathbf{b})}$$

Complete Information First Price Auction of a single item has **PoA =1. But...**

First Extension Theorem

Prove smoothness property of simple setting

FPA (complete info) is $(1 - \frac{1}{e}, 1)$ -smooth simple setting

- Prove PoA of simple setting via own-based deviations FPA (complete info) has PoA ≤ 2
- Use Extension Theorem to prove of target setting

$$PoA \leq \frac{e}{e-1} \approx 1.58$$

EXTENSION THEOREM 1

PNE PoA proved by showing (λ, μ) –smoothness property via own-value deviations \Rightarrow PoA bound of BNE with correlated values $\frac{\max\{\mu,1\}}{\lambda}$

The Composition Framework: Extension Theorem 2

Simple setting. Single-item first price auction (complete information PNE).

Target setting. <u>Simultaneous</u> single-item first price auctions with unit-demand bidders (complete information **PNE**).

 $v_1 = 10

Can we derive **global** efficiency guarantees **from** local (1/2, 1)-smoothness of each first price auction?

$$v_3 = \$7$$

$$v_4 = $9$$

$$v_i^1/b_i^1$$

$$v_i^3 b_i^3$$

$$v_i(S) = \max_{j \in S} v_i^j$$

FROM SIMPLE LOCAL SETTING TO TARGET GLOBAL SETTING

EXTENSION THEOREM 2

PNE PoA bound of 1-item auction \Rightarrow **PNE** PoA bound of *simultaneous* auctions based on proving **smoothness**

Proof sketch.

Prove **smoothness** of the global mechanism!

✓ <u>Global deviation</u>: Pick your item in the optimal allocation and perform the smoothness deviation for your local value v_i^j , i.e. $b_i^* = v_i^j/2$.

 \checkmark Smoothness locally: $u_i(b_i^*, b_{-i}) \ge \frac{v_i^j}{2} - p_{j_i^*}$

✓ <u>Sum over players</u>: $\sum_i u_i(b_i^*, \mathbf{b_{-i}}) \ge \frac{1}{2} \cdot OPT(\mathbf{v}) - REV(\mathbf{b})$

√ (1/2, 1)-smoothness property globally

The Composition Framework: Extension Theorem 3

FROM SIMPLE LOCAL SETTING TO TARGET GLOBAL SETTING

EXTENSION THEOREM 3

If **PNE** PoA of single-item auction proved via (λ, μ) -smoothness via valuation profile dependent deviation,

 \Rightarrow then BNE PoA bound of <u>simultaneous</u> auctions with *submodular* and *independent* valuations also $\max\{\mu, 1\}/\lambda$

Let f be a set function. f is submodular iff $f(S) + f(T) \ge f(S \cup T) + f(S \cap T)$

BNE PoA of simultaneous first price auctions with submodular and independent bidders $\leq \frac{e}{e-1}$

SUMMARY

Conclusion for a simple setting X

proved under restrictions

Conclusion for a complex setting Y

- ❖ X: complete information PNE ⇒ Y: incomplete information BNE
- X: single auction \Rightarrow Y: composition of auctions

Smooth auctions

An auction game is (λ, μ) -smooth if \exists a bidding strategy \mathbf{b}^* s.t. $\forall \mathbf{b}$

$$\sum_{i} u_{i} (b_{i}^{*}, b_{-i}) \geq \lambda \cdot OPT - \mu \sum_{i} p_{i}(\mathbf{b})$$

- Applies to "any" auction, not only first price auction.
- Also true for **sequential** auctions.

The Composition Framework

Simultaneous Composition of m Mechanism

Suppose that

- each mechanism M_i is (λ, μ) -smooth
- the valuation of each player across mechanisms is XO \bigcup . Then the global mechanism is (λ, μ) -smooth.

two theorems to prove efficiency guarantees when mechanisms are run in a sequence of rounds and at each round several mechanisms are run simultaneously.

We can combine these

Sequential Composition of m Mechanisms

Suppose that

- each mechanism M_j is (λ, μ) -smooth
- the valuation of each player comes from his best mechanism's outcome $v_i(x_i) = \max_i v_{ij}(x_{ij})$.

Then the global mechanism is $(\lambda, \mu + 1)$ —smooth, independent of the information released to players during the sequential rounds.

APPLICATIONS

Effective Welfare
$$EW(x) = \sum \min\{v_i(x_i), B_i\}$$

- * m simultaneous first price auctions and bidders have budgets and fractionally subadditive valuations \Rightarrow BNE achieves at least $\frac{e^{-1}}{e} \approx 0.63$ of the expected optimal effective welfare
- ❖ Generalized First-Price Auction: n bidders, m slots. We allocate slots by bid and charge bid per-click. Bidder's utility:

$$u_i(\mathbf{b}) = a_{\sigma(i)}(v_i - b_i)$$

BNE PoA < 2

* Public Goods Auctions: n bidders, m public projects. Choose a single public project to implement. Each player i has a value v_{ij} if project j is implemented

MECHANISM 3: First price public project auction.

- Solicit bids b_{ij} from each player i for each project j;
- 2 For a project j ∈ [m], let B_j = ∑_{i∈[n]} b_{ij};
- з Pick project $j(b) = \arg \max_{j \in [m]} B_j$;
- 4 Charge each player his bid for the chosen project b_{ij(b)}

APPLICATIONS

- m simultaneous with budgets/sequential bandwidth allocation mechanisms
- Second Price Auction weakly smooth mechanism (λ, μ1, μ2) + willingness-to-pay
- All-pay auction proof similar to FPA

MECHANISM 4: Proportional bandwidth allocation mechanism.

- Solicit a single bid b_i from each player i;
- 2 Allocate to player i bandwidth $x_i(b) = \frac{b_i C}{\sum_{j \in N} b_j}$;
- 3 Charge each player his bid b_i

REFERENCES

- WINE 2013 Tutorial: Price of Anarchy in Auctions, by Jason Hartline and Vasilis Syrgkanis
 http://wine13.seas.harvard.edu/tutorials/
- Hartline, J.D., 2012. Approximation in economic design. Lecture Notes.
- Syrgkanis, V. and Tardos, E., 2013. Composable and efficient mechanisms. In *Proceedings of the forty-fifth annual* ACM symposium on Theory of computing (pp. 211-220). ACM.
- Roughgarden, T., 2012. The price of anarchy in games of incomplete information. In *Proceedings of the 13th ACM Conference on Electronic Commerce* (pp. 862-879). ACM.
- Syrgkanis, V. and Tardos, E., 2012. Bayesian sequential auctions. In *Proceedings of the 13th ACM Conference on Electronic Commerce* (pp. 929-944). ACM.

REFERENCES

- Lucier, B. and Paes Leme, R., 2011. GSP auctions with correlated types. In *Proceedings of the 12th ACM conference* on *Electronic commerce*(pp. 71-80). ACM.
- Roughgarden, T., 2009. Intrinsic robustness of the price of anarchy. In Proceedings of the forty-first annual ACM symposium on Theory of computing (pp. 513-522). ACM.
- Leme, R.P., Syrgkanis, V. and Tardos, É., 2012. The curse of simultaneity. In Proceedings of the 3rd Innovations in Theoretical Computer Science Conference (pp. 60-67). ACM.
- Krishna, V., 2009. Auction theory. Academic press.