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Introduction: 

The price of anarchy in auctions 



COMPLETE INFORMATION GAMES 

Example: Chicken game 

 

 

 

 

 

The strategy profile (stay, swerve) is a mutual best response,  

a Nash equilibrium.  

 

 

 

 

 

 pure strategies : correspond directly to actions in the game 

 mixed strategies : are randomizations over actions in the game 

 

A Nash equilibrium in a game of complete information is a strategy 

profile where each player’s strategy is a best response to the strategies 

of the other players as given by the strategy profile 

stay swerve 

stay (-10,-10) (1,-1) 

swerve (-1,1) (0,0) 



INCOMPLETE INFORMATION GAMES (AUCTIONS) 

 Each agent has some private information (agent’s valuation 

𝑣𝑖) and this information affects the payoff of this agent in the 

game.  

 strategy in a incomplete information auction = a function 𝑏𝑖 ∙  
that maps an agent’s type to any bid of the agent’s possible 

bidding actions in the game  
         strategy  

𝑣𝑖
𝑏𝑖(∙)
 𝑏𝑖(𝑣𝑖) 

          valuation   bid 

 

Example: Second Price Auction 

A strategy of player 𝑖  maps valuation to bid bi(vi) = "bid vi ”  

   

 *This strategy is also truthful. 



FIRST PRICE AUCTION OF A SINGLE ITEM 

 a single item to sell 

 𝑛 players - each player 𝑖 has a private valuation 𝑣𝑖  ~𝐹𝒊 for the item.  

 distribution 𝑭 is known and valuations 𝑣𝑖   are drawn independently 

 

 

First Price Auction 

1. the auction winner is the maximum bidder  

2. the winner pays his bid  

 

 

Player’s goal: maximize utility = valuation−price paid 

F is the product distribution 

𝑭 ≡ 𝐹1 ×⋯× 𝐹𝑛  
 

Then, 𝑭−𝑖|𝑣𝑖 = 𝑭−i 



FIRST PRICE AUCTION: Symmetric 

Two bidders, independent valuations with uniform distribution U([0,1]) 

If the cat bids half her value, how should you bid? 

value 𝑣1,  bid 𝑏1 value 𝑣2,  bid 𝑏2 

Your expected utility: 𝐄 𝑢1 = 𝑣1 − 𝑏1 ∙ 𝐏 𝑦𝑜𝑢 𝑤𝑖𝑛  

 
𝐏 𝑦𝑜𝑢 𝑤𝑖𝑛 = 𝐏 𝑏2 ≤ 𝑏1 = 2𝑏1 ⇒ 𝐄 𝑢1 = 2𝑣1𝑏1 − 2𝑏1

2 

 

Optimal bid: 
𝑑

𝑑𝑏1
𝐄 𝑢1 = 0 ⇒ 𝑏1 =

𝑣1

2
    BNE 

 



BAYES-NASH EQUILIBRIUM (BNE) + PRICE OF ANARCHY (PoA) 

A Bayes-Nash equilibrium (BNE) is a strategy profile where if 

for all 𝑖 𝑏𝑖(𝑣𝑖) is a best response when other agents play  𝑏−𝑖(𝑣−𝑖)  
with 𝑣−𝑖 ∼ 𝐅−𝐢|𝑣𝑖  (conditioned on 𝑣𝑖) 

 

Price of Anarchy (PoA) = the worst-case ratio between the 

objective function value of an equilibrium and of an optimal 

outcome 

 

Example of an auction objective function: 

Social welfare = the valuation of the winner  



FIRST PRICE  AUCTION: Symmetric vs Non-Symmetric 

Symmetric Distributions [two bidders 𝑈( 0,1 )] 

 b1 𝑣1 =
𝑣1

2
 , b2 𝑣2 =

𝑣2

2
 is BNE  

 the player with the highest valuation wins in BNE ⇒  

 first-price auction maximizes social welfare 

 

Non-Symmetric Distributions [two bidders 𝑣1~ 𝑈 0,1 , 𝑣2~𝑈( 0,2 )] 

 b1 𝑣1 =
2

3𝑣1
2 − 4 − 3𝑣1

2 , b2 𝑣2 =
2

3𝑣2
−2 + 4 + 3𝑣2

2  is BNE 

 player 1 may win in cases where 𝑣2 > 𝑣1  ⇒ PoA>1 
 



 

The smoothness framework 



MOTIVATION: Simple and... not-so-simple auctions  

Simple! Single item second price auction 

Simple? 

How realistic is the  

assumption that mechanisms 

run in isolation, as traditional 

mechanism design has 

considered? 

Typical mechanisms used 

in practice (ex. online 

markets) are extremely 

simple and not truthful! 



COMPOSITION OF MECHANISMS 

 

Simultaneous Composition of 𝒎 Mechanisms 

The player reports a bid at each mechanism 𝑀𝑗 

 

 

Sequential Composition of 𝒎 Mechanisms 

The player can base the bid he submits at mechanism 𝑀𝑗 on the 

history of the submitted bids in previous mechanisms. 

 



“ 
Reducing analysis of complex setting to simple setting. 

How to design mechanisms so that the efficiency guarantees for a 

single mechanism (when studied in isolation) carry over to the same 

or approximately the same guarantees for a market composed of 

such mechanisms? 

 

Key question 

What properties of local mechanisms guarantee global efficiency in 

a market composed of such mechanisms? 

Conclusion for a 

simple setting X 
Conclusion for a 

complex setting Y 
proved under restriction P 



SMOOTHNESS 

 

Smooth auctions 

An auction game is 𝝀, 𝝁 -smooth if ∃ a bidding strategy 𝐛∗ s.t. ∀𝐛 

 𝑢𝑖  𝑏𝑖
∗, 𝑏−𝑖 ≥ 𝝀 ⋅ 𝑂𝑃𝑇 − 𝝁 𝑝𝑖(𝐛)

𝑖𝑖

 

 

Smoothness is property of auction not equilibrium! 
 



SMOOTHNESS IMPLIES PoA [PNE] 

 

 
Proof. Let 𝐛 : a Nash strategy profile, 

                 𝐛∗: a strategy profile that satisfies smoothness 

𝐛 Nash strategy profile ⇒ 𝑢𝑖(𝐛)  ≥  𝑢𝑖(𝑏𝑖
∗ , 𝑏−𝑖)  

 

Summing over all players:  𝑢𝑖  𝐛 ≥ 𝑖   𝑢𝑖(𝑏𝑖
∗ , 𝑏−𝑖)𝑖  

 

By auction smoothness:  𝑢𝑖  𝐛 ≥ 𝑖 𝝀 ⋅ 𝑂𝑃𝑇 − 𝝁 𝑝𝑖(𝐛)𝑖   

 ⇒  𝑢𝑖  𝐛  𝑖 + 𝝁 𝑝𝑖(𝐛)𝑖 ≥ 𝝀 ⋅ 𝑂𝑃𝑇 ⇒ max 1, 𝜇  𝑆𝑊 𝐛 ≥ 𝜆 ⋅ 𝑂𝑃𝑇 

 

THEOREM 

The (𝜆, 𝜇)-smoothness property of an auction implies that a Nash 

equilibrium strategy profile 𝐛 satisfies max 1, 𝜇  𝑆𝑊 𝐛 ≥ 𝜆 ⋅ 𝑂𝑃𝑇  
 

(λ,μ)-smoothness ⇒ 𝑷𝒐𝑨 ≤
max(1, μ)

λ
 

𝑃𝑜𝐴 =
𝑂𝑃𝑇(𝐯) 

𝑆𝑊(𝐛)
 

 

An auction game is 𝝀, 𝝁 -smooth if ∃ 
a bidding strategy 𝐛∗ s.t. ∀𝐛 

 𝑢𝑖  𝑏𝑖
∗, 𝑏−𝑖 ≥ 𝝀 ⋅ 𝑂𝑃𝑇 − 𝝁 𝑝𝑖(𝐛)

𝑖𝑖

 

 

A vector of strategies s is said to 

be a Nash equilibrium if for each 

player i and each strategy 𝑠𝑖
′:  

𝑢𝑖  𝐬 ≥  𝑢𝑖  (𝑠𝑖
′, 𝑠−𝑖) 



SMOOTHNESS IMPLIES PoA [BNE!] 

 

THEOREM : Generalization to Bayesian settings 

The (𝜆, 𝜇)-smoothness property of an auction (with an 𝐛∗ such that 

𝑏𝑖
∗depends only on the value of player i) implies that a Bayes-Nash 

equilibrium strategy profile 𝐛 satisfies max 1, 𝜇  𝐄,𝑆𝑊 𝐛 - ≥ 𝜆 ⋅ 𝐄,𝑂𝑃𝑇-  
 

(λ,μ)-smoothness ⇒ 𝑩𝑵𝑬 𝑷𝒐𝑨 ≤
max(1, μ)

λ
 

𝑃𝑜𝐴 =
𝐸 𝑂𝑃𝑇 𝐯

𝐸 𝑆𝑊 𝐛 𝐯
 

 

A vector of strategies s is said to be a Bayes-Nash equilibrium 

if for each player i and each strategy 𝑠𝑖
′, maximizes utility 

(conditional on valuation 𝑣𝑖) 
E𝑣 𝑢𝑖  𝐬 𝑣𝑖 ≥  E𝑣 ,𝑢𝑖  (𝑠𝑖

′ , 𝑠−𝑖 )|𝑣𝑖 - 



Complete information PNE  

to BNE with correlated values: 

Extension Theorem 1 



“ 
Conclusion for a 

simple setting X 
Conclusion for a 

complex setting Y 

POA extension 

theorem 

Complete information  

Pure Nash Equilibrium 
𝐯 = (𝑣1, … , 𝑣𝑛) : common knowledge 

Incomplete information 

Bayes-Nash Equilibrium 

with asymmetric correlated 

valuations 
𝑃𝑜𝐴 =

𝑂𝑃𝑇(𝐯) 

𝑆𝑊(𝐛)
 

𝑃𝑜𝐴 =
𝐸 𝑂𝑃𝑇 𝐯

𝐸 𝑆𝑊 𝐛 𝐯
 



FPA AND SMOOTHNESS 

 

 
Proof.  We’ll prove that  𝑢𝑖𝑖 𝑏𝑖

∗, 𝑏−𝑖 ≥
1

2
 𝑂𝑃𝑇 −  𝑝𝑖(𝐛)𝑖 . 

Let’s try the bidding strategy 𝑏𝑖
∗ =
𝑣𝑖

2
. 

Maximum valuation bidder: 𝑗 = argmax
𝑖
𝑣𝑖  

 If 𝑗 wins, 𝑢𝑗 = 𝑣𝑗 − 𝑏𝑗
∗ 𝑣𝑗 =

𝑣𝑗

2
 ≥
1

2
 𝑣𝑗  −  𝑝𝑖(𝐛)𝑖  

 If 𝑗 loses, 𝑢𝑗 = 0, and  𝑝𝑖(𝐛)𝑖 = max
𝑖
𝑏𝑖 >

1

2
𝑣𝑗  

 ⇒ 𝑢𝑗 = 0 > 
1

2
 𝑣𝑗  −  𝑝𝑖(𝐛)𝑖  . 

For all other bidders 𝑖 ≠ 𝑗 : 𝑢𝑖 𝑏𝑖
∗, 𝑏−𝑖 ≥ 0. 

Summing up over all players we get  

  𝑢𝑖(𝑏𝑖
∗, 𝑏−𝑖)

𝑖

 ≥
1

2
𝑣𝑗  − 𝑝𝑖 𝐛

𝑖

=
1

2
𝑂𝑃 𝑇 − 𝑝𝑖

𝑖

𝐛  

 
LEMMA 

First Price Auction (complete information) of a single item is (
𝟏

𝟐
, 𝟏)-smooth  

 

 

An auction game is 𝝀, 𝝁 -smooth if ∃ 
a bidding strategy 𝐛∗ s.t. ∀𝐛 

 𝑢𝑖  𝑏𝑖
∗, 𝑏−𝑖 ≥ 𝝀 ⋅ 𝑂𝑃𝑇 − 𝝁 𝑝𝑖(𝐛)

𝑖𝑖

 



COMPLETE INFORMATION FIRST PRICE AUCTION :  

  PNE & Complete Information 

 

 
Proof.  

Each bidder 𝑖 can deviate to 𝑏𝑖 =
𝑣𝑖

2
. 

We prove that 𝑆𝑊(𝐛) ≥
1

2
𝑂𝑃𝑇(𝐯). 

 

 
LEMMA 

Complete Information First Price Auction of a single item has PoA ≤ 2  
 

𝑃𝑜𝐴 =
𝑂𝑃𝑇(𝐯) 

𝑆𝑊(𝐛)
 

Complete Information First Price 

Auction of a single item has PoA =1. 

But…  



“ 

First Extension Theorem 
  

1. Prove smoothness property of simple setting  

2. Prove PoA of simple setting via own-based 

deviations 

3. Use Extension Theorem to prove PoA bound 

of target setting 

 

 

FPA (complete info) is (𝟏 −
𝟏

𝒆
, 𝟏)-smooth  

FPA (complete info) has PoA ≤ 2 

 

EXTENSION THEOREM 1 

PNE PoA proved by showing 𝜆, 𝜇 −smoothness property via own-value 
deviations ⇒ PoA bound of BNE with correlated values max*𝜇,1+

λ
 

 

𝑷𝒐𝑨 ≤
𝒆

𝒆 − 𝟏
≈ 𝟏. 𝟓𝟖 



The Composition Framework: 

Extension Theorem 2 



𝒗𝟐 = $𝟓 𝒗𝟏 = $𝟏𝟎𝟎 

𝒗𝟒 = $𝟗 
𝒗𝟑 = $𝟕 

Simple setting. Single-item first price 

auction (complete information PNE). 

Target setting. Simultaneous single-item 

first price auctions with unit-demand 

bidders (complete information PNE).  

Unit-Demand Valuation  

𝒗𝒊 𝑺 = 𝐦𝐚𝐱
𝒋∈𝑺
 𝒗𝒊
𝒋
  

𝒗𝒊
𝟑

 

𝒗𝒊
𝟏

 

𝒗𝒊
𝟐

 

𝒃𝒊
𝟑

 

𝒃𝒊
𝟏

 

𝒃𝒊
𝟐

 

Can we derive global efficiency guarantees from local 

(1/2, 1)-smoothness of each first price auction? 



FROM SIMPLE  LOCAL SETTING TO TARGET  GLOBAL SETTING 

EXTENSION THEOREM  2 

PNE PoA bound of 1-item auction ⇒PNE PoA bound of simultaneous  auctions 

based on proving smoothness 

Proof sketch. 

Prove smoothness of the global mechanism! 

 Global deviation: Pick your item in the optimal allocation  

 and perform the smoothness deviation  

 for your local value 𝑣𝑖
𝑗
, i.e. bi

∗ = 𝑣𝑖
𝑗
/2. 

 Smoothness locally: 𝑢𝑖 𝑏𝑖
∗, 𝑏−𝑖 ≥

𝑣𝑖
𝑗

2
− 𝑝𝑗𝑖

∗ 

 Sum over players: 𝑢𝑖 𝑏𝑖
∗, 𝐛−𝐢𝑖 ≥

𝟏

𝟐
⋅ 𝑂𝑃𝑇 𝐯 − 𝑅𝐸𝑉 𝐛  

 (1/2, 1)-smoothness property globally 
𝟎 

𝑣𝑖
𝑗
/2 

𝟎 

𝑗𝑖
∗ 



The Composition Framework: 

Extension Theorem 3 



FROM SIMPLE  LOCAL SETTING TO TARGET  GLOBAL 

SETTING 

 

EXTENSION THEOREM  3 

If PNE PoA of single-item auction proved via (𝜆, 𝜇)-smoothness via valuation 

profile dependent deviation,  

⇒ then BNE PoA bound of simultaneous auctions with submodular and 

independent  valuations also max*𝜇, 1+/𝜆 
 

BNE PoA of simultaneous first price auctions with 

submodular and independent  bidders  ≤
𝑒

𝑒−1
 

Let f be a set function. 

f is submodular iff 

 𝑓(𝑆)  +  𝑓(𝑇)  ≥  𝑓(𝑆 ∪  𝑇)  +  𝑓(𝑆 ∩  𝑇) 



SUMMARY 

 

 
 

 X: complete information PNE   ⇒  Y: incomplete information BNE 

 X: single auction   ⇒  Y: composition of auctions 

 

 

 

 

 

 

 

  - Applies to "any" auction, not only first price auction. 

  - Also true for sequential auctions. 

 

 

Conclusion for a 

simple setting X 
Conclusion for a 

complex setting Y 

proved under 

restrictions 

 

Smooth auctions 

An auction game is 𝝀, 𝝁 -smooth if ∃ a bidding strategy 𝐛∗ s.t. ∀𝐛 

 𝑢𝑖  𝑏𝑖
∗, 𝑏−𝑖 ≥ 𝝀 ⋅ 𝑂𝑃𝑇 − 𝝁 𝑝𝑖(𝐛)

𝑖𝑖

 

 



“ 
The Composition Framework 

 

Simultaneous Composition of 𝒎 Mechanisms 

Suppose that 

- each mechanism 𝑀𝑗 is (𝜆, 𝜇) -smooth 

- the valuation of each player across mechanisms is XOS. 

Then the global mechanism is (𝜆, 𝜇) -smooth. 
 
Sequential Composition of 𝒎 Mechanisms 

Suppose that 

- each mechanism 𝑀𝑗 is (𝜆, 𝜇) -smooth 

- the valuation of each player comes from his best mechanism’s outcome 

𝑣𝑖  𝑥𝑖 = max
𝑗
𝑣𝑖𝑗 (𝑥𝑖𝑗). 

Then the global mechanism is (𝜆, 𝜇 +  1) −smooth, independent of the 

information released to players during the sequential rounds. 

We can combine these 

two theorems to prove 

efficiency guarantees 

when mechanisms are 

run in a sequence of 

rounds and 

at each round several 

mechanisms are run 

simultaneously. 



Applications 



APPLICATIONS 

 m simultaneous first price auctions and bidders have budgets 

and fractionally subadditive valuations ⇒ BNE achieves at least 
𝑒−1

𝑒
 ≈ 0.63 of the expected optimal effective welfare 

 Generalized First-Price Auction: 𝑛 bidders, 𝑚 slots. We 

allocate slots by bid and charge bid per-click. Bidder’s utility: 

𝑢𝑖 𝐛 = 𝑎𝜎 𝑖 𝑣𝑖 − 𝑏𝑖  

     BNE 𝑃𝑜𝐴 ≤ 2 
 Public Goods Auctions: 𝑛 bidders, 𝑚 public projects.      

Choose a single public project to implement .                         

Each player 𝑖 has a value 𝑣𝑖𝑗 if project  𝑗 is implemented 

 

 

 

Effective Welfare 

𝐸𝑊(𝑥)  = min *𝑣𝑖(𝑥𝑖), 𝐵𝑖+ 

𝑖

 



APPLICATIONS 

 m simultaneous with budgets/sequential bandwidth allocation 

mechanisms 

 Second Price Auction weakly smooth mechanism (λ, μ1, μ2) + 

willingness-to-pay 

 All-pay auction - proof similar to FPA 
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