Minimum Makespan Scheduling

Approximation Algorithms 2009
Petros Potikas

NTUA / Corelab / Approximation Algorithms / Spring 2009 / P. Potikas / Minimum Makespan



Minimum makespan scheduling

Definition: Let p,, p,, ..., p, be the processing times for » jobs and m
identical machines.

Goal: Find an assignment of the 7 jobs to the m machines, so that the
completion time, also called makespan, 1s minimized.
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Minimum makespan scheduling

Results

= Strongly NP-hard problem
= Approximation algorithm with ratio 2
= PTAS

= No FPTAS
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Minimum makespan scheduling

Lower bounds
1. The average time for which a machine has to run, (2, p,)/m,

2. The last processing time.

LB =max{(2,; p))/m, max;{p;} }
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Minimum makespan scheduling

Algorithm 1 (Graham, 1966)
1. Order the n jobs arbitrarily.

2. Schedule jobs on machines in this order, scheduling the next job on
machine that has been assigned least so far.
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Minimum makespan scheduling

Theorem 1: Algorithm 1 achieves a 2-approximation.

Proof:

Let M, be the machine that completes last in the schedule produced by the
algorlthm and let j be the last job scheduled on this machine.

M, I

A

< (2ip)/m

Y
A
)

startj

Let start; be the time that job j starts.
From the choice of M, by the algorithm we know that

all the other machines are busy until start,

Thus, start; < (2. p;,)/m < OPT
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Minimum makespan scheduling

Theorem 1: Algorithm I achieves an approximation factor 2.

Proof (cont’d):
Furthermore, p; < OPT

Thus, the makespan produced by the algorithm is

start; + p; <2-OPT

We also proved, that LB < OPT < 2.LB.
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Minimum makespan scheduling

Tight example:

A sequence of m’ jobs with unit processing time, followed by a single
job of length m.

OPT = m+1, while the algorithm gives makespan 2m.
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Minimum makespan scheduling

Algorithm 2 (Graham)
1. Sort the n jobs by decreasing processing times.

2. Schedule jobs on machines in this order, scheduling the next job on
machine that has been assigned least so far.

Theorem 2: Algorithm 2 achieves a 4/3-approximation.

Tight example:
m machines, n=2m+1 jobs

two jobs of length m+1, m+2,..., 2m
one job of length m
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A PTAS for minimum makespan scheduling

We will, for every >0, derive an algorithm A4_ that
» Returns a schedule with makespan < (1+3¢)OPT

« Runs in time O(n%* | log,(1/¢) | ) where k= | log,, (1/e) ]

A, 1s therefore a

Polynomial Time Approximation Scheme (PTAS)

but not a

Fully Polynomial Time Approximation Scheme (FPTAS)

(in an FPTAS, time 1s not only polynomial in z but also in //¢)
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Restricted bin packing

There a exists a schedule with makespan 7 iff n objects of sizes
P, Pa---» P, can be packed into m bins of capacity .

Reduction from mininum makespan to bin packing:

Let I be the sizes of the n objects, p;, p,,..., p, and bins(/,¢) the
minimum number of bins of size required to pack these #n objects.

OPT(makespan) = min{z : bins(/,f) < m}

We know that
LB<t<2-LB

So the idea is to binary search [LB, 2-LB] to find the minimum ¢ for which
bins(Z,¢) < m.

We can’t do this exactly!
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Core algorithm: restricted bin packing (fixed number of object sizes),
of time O(n?*) that uses a(/,t,¢) bins of size #(1+¢).

This packing has the property
Vte  o(lte)<bins(/)
Thus Ve  a(l,2LB,¢) < bins(/,2LB) <m

So, the PTAS is the following:

e If a(/,LB,e) < m then use packing given by core algorithm for /=LB.
This has makespan

< LB(1+¢) < OPT(1+¢)

e If a(/,LB,g) > m, then perform a binary search to find an interval
[7°,7] in [LB,2LB] with 7T-T"'< ¢LB, a(l,T",¢) > m and a(l,T,e) < m.
Return the packing given by the core algorithm for =7.

Notice that m < a(l,T’,e) < bins(L,T’), so T’ < OPT and
T<T +¢eLB<OPT+ eOPT < (1+¢)OPT
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The core algorithm for =7 returns a schedule (packing) with makespan
at most (1+¢)7. The makespan of the schedule returned 1s at most

(1+e)T < (1+£)?OPT < (1+3¢)OPT

The binary search uses at most /log,1/e steps.

Error introduced by two sources:

o Rounding objects so that there a bounded number of different sizes

o Terminating the binary search to ensure polynomial running time
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Exact restricted bin packing

n 1items to pack in bins of size ¢, with & different sizes only

Input I=(7,,i,,...,i;) (fix an ordering on the object sizes)
BINS(,,i,,...,i;): minimum number of bins needed to pack these objects
Suppose we are given (n,,1,,...,1,), 2n~=n

First, compute O, the set of all k-tuples (g,.9,,...,q,), such that
BINS(¢,,¢5---,g;)=1 (at most O(n*) such tuples)
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Exact restricted bin packing

Use dynamic programming to find all the entries of the table
BINS(i ,,i5,...,i;), for 0 < ;< n

1. Vg € O set BINS(g) =1
2. If 3j, such that i; <0 then set BINS(i},i,...,i;) = ©
3. For all other g, use recurrence relation

BINS(i},iy,....0) = 1 +min; » o BINS(-q,,ix5,. - ,ii-q))

Since there are O(n¥) entries and each one takes O(r¥) time, the algorithm
needs O(n’¥) time.
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The Core Algorithm

t € [LB,2LB], so V/, p;st

1. An object is small if 1t has size < fe.
2. Non-small objects are rounded.
If p; € [te(1+e), te(1+e)*'], then set p; = te(1+¢)'. There can be at most
k= log,, 1/e| different sizes.
3. Use dynamic programming algorithm to optimally pack non-small
objects using pj’ costs into bins of size t.
Rounding can reduce size by a factor of 1+¢ at most, so packing
1s valid for bins of size #(1+¢) with the original p; object sizes.
4. Place the small objects items into the #(1+¢) packing greedily. Open
new bins only 1f needed. If new bins are opened, then all other must
be filled at height ¢ at least.
5. Let a(/,t,e) be the number of bins used (of size #(1+¢)).
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The Core Algorithm
Lemma: a(/,t,e) < bins(/,¢).

Proof:

Case 1: The algorithm opens new bins. Then all the bins, except possibly
the last one, are filled to at least size t. Thus, the optimal packing into
bins of size t must use at least a(/,z,¢) bins.

Case 2: The algorithm does not open new bins. Let I’ be the set of non-
small items. Then a(/,t,&) = a(l’,t,¢)
< bins(/’,¢)
< bins(Z,?).
The optimal packing of I’ uses bins(/’,¢) bins, so the same packing of the
rounded down I’ also uses bins(/’,¢) bins.
But a(1,t,¢) 1s the optimal number of bins needed for the rounded down I’.
The first inequality holds.
Packing optimally more items can not reduce the number of bins needed.
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