**Approximation Algorithms 2009 Petros Potikas** 

**Definition:** Let  $p_1, p_2, ..., p_n$  be the processing times for n jobs and m identical machines.

*Goal*: Find an assignment of the *n* jobs to the *m* machines, so that the completion time, also called *makespan*, is minimized.

#### **Results**

- Strongly NP-hard problem
- Approximation algorithm with ratio 2
- PTAS
- No FPTAS

#### Lower bounds

- 1. The average time for which a machine has to run,  $(\sum_i p_i)/m$ ,
- 2. The last processing time.

LB = 
$$\max\{(\sum_i p_i)/m, \max_i \{p_i\}\}$$

### Algorithm 1 (Graham, 1966)

- 1. Order the *n* jobs arbitrarily.
- 2. Schedule jobs on machines in this order, scheduling the next job on machine that has been assigned least so far.

**Theorem 1:** Algorithm 1 achieves a 2-approximation.

#### **Proof:**

Let  $M_i$  be the machine that completes last in the schedule produced by the algorithm and let j be the last job scheduled on this machine.



Let  $start_i$  be the time that job j starts.

From the choice of  $M_i$  by the algorithm we know that

all the other machines are busy until start,

Thus, 
$$start_i \le (\sum_i p_i)/m \le OPT$$

**Theorem 1:** Algorithm 1 achieves an approximation factor 2.

#### **Proof (cont'd):**

Furthermore,  $p_j \leq \text{OPT}$ 

Thus, the makespan produced by the algorithm is

$$start_j + p_j \le 2 \cdot OPT$$

We also proved, that  $LB \leq OPT \leq 2 \cdot LB$ .

### Tight example:

A sequence of  $m^2$  jobs with unit processing time, followed by a single job of length m.

OPT = m+1, while the algorithm gives makespan 2m.

### **Algorithm 2 (Graham)**

- 1. Sort the *n* jobs by decreasing processing times.
- 2. Schedule jobs on machines in this order, scheduling the next job on machine that has been assigned least so far.

**Theorem 2:** Algorithm 2 achieves a 4/3-approximation.

### Tight example:

m machines, n=2m+1 jobs two jobs of length m+1, m+2,..., 2mone job of length m

## A PTAS for minimum makespan scheduling

We will, for every  $\varepsilon > 0$ , derive an algorithm  $A_{\varepsilon}$  that

- Returns a schedule with makespan  $\leq (1+3\varepsilon)OPT$
- Runs in time  $O(n^{2k} \lceil log_2(1/\varepsilon) \rceil)$  where  $k = \lceil log_{1+\varepsilon}(1/\varepsilon) \rceil$

 $A_{\varepsilon}$  is therefore a

Polynomial Time Approximation Scheme (PTAS)

but not a

Fully Polynomial Time Approximation Scheme (FPTAS)

(in an FPTAS, time is not only polynomial in *n* but also in  $1/\varepsilon$ )

# Restricted bin packing

There a exists a schedule with makespan t iff n objects of sizes  $p_1, p_2, ..., p_n$  can be packed into m bins of capacity t.

Reduction from mininum makespan to bin packing:

Let I be the sizes of the n objects,  $p_1, p_2, ..., p_n$  and bins(I,t) the minimum number of bins of size required to pack these n objects.

$$OPT(makespan) = min\{t : bins(I,t) \le m\}$$

We know that

$$LB \le t \le 2 \cdot LB$$

So the idea is to binary search [LB,  $2 \cdot LB$ ] to find the minimum t for which bins(I,t)  $\leq m$ .

#### We can't do this exactly!

Core algorithm: restricted bin packing (fixed number of object sizes), of time  $O(n^{2k})$  that uses  $\alpha(I,t,\varepsilon)$  bins of size  $t(1+\varepsilon)$ .

This packing has the property

$$\forall t, \varepsilon$$
  $\alpha(I, t, \varepsilon) \leq \text{bins}(I, t)$ 

Thus  $\forall \varepsilon \quad \alpha(I, 2LB, \varepsilon) \leq \text{bins}(I, 2LB) \leq m$ 

So, the PTAS is the following:

• If  $\alpha(I, LB, \varepsilon) \le m$  then use packing given by core algorithm for t=LB. This has makespan

$$\leq$$
 LB(1+ $\varepsilon$ )  $\leq$  OPT(1+ $\varepsilon$ )

• If  $\alpha(I, LB, \varepsilon) > m$ , then perform a binary search to find an interval [T', T] in [LB, 2LB] with  $T-T' \le \varepsilon LB$ ,  $\alpha(I, T', \varepsilon) > m$  and  $\alpha(I, T, \varepsilon) \le m$ . Return the packing given by the core algorithm for t=T.

Notice that 
$$m < \alpha(I, T', \varepsilon) \le \text{bins}(I, T')$$
, so  $T' \le \text{OPT}$  and  $T \le T' + \varepsilon \text{LB} \le \text{OPT} + \varepsilon \text{OPT} \le (1+\varepsilon)\text{OPT}$ 

The *core* algorithm for t=T returns a schedule (packing) with makespan at most  $(1+\varepsilon)T$ . The makespan of the schedule returned is at most

$$(1+\varepsilon)T \le (1+\varepsilon)^2 \text{OPT} \le (1+3\varepsilon) \text{OPT}$$

The binary search uses at most  $log_2 1/\varepsilon$  steps.

Error introduced by two sources:

- o Rounding objects so that there a bounded number of different sizes
- o Terminating the binary search to ensure polynomial running time

# **Exact restricted bin packing**

n items to pack in bins of size t, with k different sizes only

Input  $I=(i_1,i_2,...,i_k)$  (fix an ordering on the object sizes)

BINS $(i_1, i_2, ..., i_k)$ : minimum number of bins needed to pack these objects

Suppose we are given  $(n_1, n_2, ..., n_k)$ ,  $\sum_i n_i = n$ 

First, compute Q, the set of all k-tuples  $(q_1,q_2,...,q_k)$ , such that BINS $(q_1,q_2,...,q_k)$ =1 (at most  $O(n^k)$  such tuples)

# **Exact restricted bin packing**

Use dynamic programming to find all the entries of the table BINS $(i_1, i_2, ..., i_k)$ , for  $0 \le i_j \le n_j$ 

- 1.  $\forall q \in Q \text{ set BINS}(q) = 1$
- 2. If  $\exists j$ , such that  $i_j < 0$  then set  $BINS(i_1, i_2, ..., i_k) = \infty$
- 3. For all other q, use recurrence relation BINS $(i_1, i_2, ..., i_k) = 1 + \min_{(q1, q2, ..., qk) \in Q} BINS(i_1 q_1, i_2 q_2, ..., i_k q_k)$

Since there are  $O(n^k)$  entries and each one takes  $O(n^k)$  time, the algorithm needs  $O(n^{2k})$  time.

## The Core Algorithm

 $t \in [LB, 2LB]$ , so  $\forall j, p_j \le t$ 

- 1. An object is small if it has size  $\leq t\varepsilon$ .
- 2. Non-small objects are rounded.
- If  $p_j \in [t\varepsilon(1+\varepsilon)^i, t\varepsilon(1+\varepsilon)^{i+l}]$ , then set  $p_j' = t\varepsilon(1+\varepsilon)^i$ . There can be at most  $k = \lceil \log_{l+\varepsilon} 1/\varepsilon \rceil$  different sizes.
- 3. Use dynamic programming algorithm to optimally pack non-small objects using  $p_j$  costs into bins of size t.
  - Rounding can reduce size by a factor of  $1+\varepsilon$  at most, so packing is valid for bins of size  $t(1+\varepsilon)$  with the original  $p_i$  object sizes.
- 4. Place the small objects items into the  $t(1+\varepsilon)$  packing greedily. Open new bins only if needed. If new bins are opened, then all other must be filled at height t at least.
- 5. Let  $\alpha(I,t,\varepsilon)$  be the number of bins used (of size  $t(1+\varepsilon)$ ).

# The Core Algorithm

**Lemma:**  $\alpha(I,t,\varepsilon) \leq \text{bins}(I,t)$ .

#### **Proof:**

Case 1: The algorithm opens new bins. Then all the bins, except possibly the last one, are filled to at least size t. Thus, the optimal packing into bins of size t must use at least  $\alpha(I,t,\varepsilon)$  bins.

Case 2: The algorithm does not open new bins. Let I' be the set of non-small items. Then  $\alpha(I,t,\varepsilon) = \alpha(I',t,\varepsilon)$  $\leq \text{bins}(I',t)$ 

 $\leq$  bins(I,t).

The optimal packing of I' uses bins(I',t) bins, so the same packing of the rounded down I' also uses bins(I',t) bins.

But  $\alpha(I',t,\varepsilon)$  is the *optimal* number of bins needed for the rounded down I'. The first inequality holds.

Packing optimally more items can not reduce the number of bins needed.□