
Uniform Derandomization

Uniform Derandomization
Simulation of BPP, RP and AM under Uniform Assumptions

A. Antonopoulos (N.T.U.A.)

Computation and Reasoning Laboratory

Uniform Derandomization

1 Uniform Derandomization of BPP
Main Theorem
Proof: Step 1/4
Proof: Step 2/4
Proof: Step 3/4
Proof: Step 4/4
Composing the Proof

2 Uniform Derandomization of RP
Refuters and their properties
Main Results

3 Uniform Derandomization of AM
Arthur-Merlin Games Reminder
Uniform Derandomization of AM
Gap Theorems for AM and similar classes

4 Other Notions and Consequences
Derandomization versus Circuit Lower Bounds
Typically-Correct Derandomization
Consequences to Dimension of Complexity Classes

Uniform Derandomization

Uniform Derandomization of BPP

1 Uniform Derandomization of BPP
Main Theorem
Proof: Step 1/4
Proof: Step 2/4
Proof: Step 3/4
Proof: Step 4/4
Composing the Proof

2 Uniform Derandomization of RP
Refuters and their properties
Main Results

3 Uniform Derandomization of AM
Arthur-Merlin Games Reminder
Uniform Derandomization of AM
Gap Theorems for AM and similar classes

4 Other Notions and Consequences
Derandomization versus Circuit Lower Bounds
Typically-Correct Derandomization
Consequences to Dimension of Complexity Classes

Uniform Derandomization

Uniform Derandomization of BPP

Main Theorem

Uniform Derandomization of BPP

Theorem (IW98)

If EXP 6= BPP, then, for every δ > 0, every BPP algorithm can
be simulated deterministically in time 2n

δ
so that, for infinitely

many n’s, this simulation is correct on at least 1− 1
n fraction of all

inputs of size n.

That’s the first (universal) Derandomization result, which
implies the non-trivial derandomization of BPP, under a fair
(but open) assumption!

But:

1 The simulation works only for infinitely many input lengths
(i.o. complexity)

2 May fail on a negligible fraction of inputs even of these
lengths!

Uniform Derandomization

Uniform Derandomization of BPP

Main Theorem

Proof Outline

1 Hard Function: We will use a ”Σp
2-hard“ Boolean Function f

with some desired properties (PERMANENT in our case).

2 The Generator: We’ll construct a PRG G using the above
function, similar to the NW-construction.

3 Derandomization: We will fix a (probabilistic) algorithm for
an L ∈ BPP, and for all inputs we will run it deterministically
over all outputs of G , and take the majority vote!
If this algorithm fails to be in subexponential time, then we’ll
have an efficient distinguisher!

4 Removing the Oracle: If the above holds we have:

An efficient algorithm for fn given an oracle.
We can ”use“ our construction as a BPP algorithm for f , by
removing its oracles!

And, thus, we have a contradiction, which proves our theorem!

Uniform Derandomization

Uniform Derandomization of BPP

Proof: Step 1/4

The Hard Function

Theorem (BFNW93)

If EXP * P/poly, then BPP ⊆ SUBEXP for infinitely many input
lengths.

So, we -fairly - assume that EXP ⊆ P/poly.

Then, EXP = Σp
2

EXP ⊆ PH ⊆ PPERMANENT

Then PERMANENT is EXP-complete!

We construct a PRG (like the NW-construction) using
PERMANENT as hard function...

Why PERMANENT ? ? ?

PERMANENT is:
1 Random Self-Reducible
2 Downward Self-Reducible

Uniform Derandomization

Uniform Derandomization of BPP

Proof: Step 1/4

The Hard Function

Formal Definitions:

Definition (Construction Problems)

Let f : {0, 1}∗ → {0, 1}∗ and ε : N→ [0, 1].

Construction problem C f ,ε
n contains all circuits C with n inputs

satisfying:
Pr

x∈U{0,1}n [C (x) = f (x)] ≥ ε(n)

Circuits Computing f : C f = C f ,1

Distinguishers: Let m : N→ N,
G = {Gn : {0, 1}m(n) → {0, 1}n}. DG ,ε contains all circuits D
with n inputs satisfying∣∣∣Pry∈{0,1}m(n) [D(G (y)) = 1]− Prx∈{0,1}n [D(x) = 1]

∣∣∣ ≥ ε

Uniform Derandomization

Uniform Derandomization of BPP

Proof: Step 1/4

The Hard Function

Definition

An efficient construction of B from A is a probabilistic
polynomial-time algorithm that ∀n∀α, outputs a member of Bn

with probability at least 1− α. If such a construction exists, we
denote it by A→ B. When we allow to the construction to make
also queries to an oracle O, we denote it A→O B.

The relation ”→“ is transitive.

Definition (Random Self-Reducibility)

Solving the problem on any input x can be reduced to solving it on
a sequence of random inputs y1, y2, . . . , where each yi is uniformly
distributed among all inputs. In our formalism:

C f ,1−n−c → C f

Uniform Derandomization

Uniform Derandomization of BPP

Proof: Step 1/4

The Hard Function

Definition (Downward Self-Reducibility)

A language L is downward self-reducible if there is a
polynomial-time algorithm R, such that:

∀n∀x ∈ {0, 1}n : RLn−1(x) = L(x)

where by Lk we denote an oracle that solves L on inputs of size at
most k . With Turing Reductions:

Ln ≤p
T Ln−1

Uniform Derandomization

Uniform Derandomization of BPP

Proof: Step 2/4

The Pseudorandom Generator

As we saw, a PRG is a function G : {0, 1}` → {0, 1}m with
certain properties.

It is easy to construct a generator G : {0, 1}` → {0, 1}`+1, by
concatenating a bit: G (z) = z ◦ f (z)
where f : {0, 1}` → {0, 1} s.t. H(f) ≥ s.

We argue that this generator is (s − 3, 1/s)-pseudorandom!

Theorem

If there is a circuit D, |D| = s, such that:

|Prx [D(x ◦ f (x)) = 1]− Prx ,b [D(x ◦ b) = 1] | > ε

Then there is a circuit A, |A| = s + 3, such that:

Prx [A(x) = f (x)] >
1

2
+ ε

Uniform Derandomization

Uniform Derandomization of BPP

Proof: Step 2/4

The Pseudorandom Generator

By applying many times the same idea, we can construct a
PRG that doubles the length of its output:

But, for our purpose, we need a generator with output
exponentially larger than the input!

NW idea is to take the seed’s pieces partly depedent
(nondisjoint), while we want to ”take care“ of their
intersections. The idea is simple & smart:

Definition

A family S = {S1, . . . ,Sm} of subsets of [`] is an (`, n, d)-design, if
|Sj | = n,∀j and |Sj ∩ Sk | ≤ d , ∀j 6= k (d < n < `).

The following Lemma implies that we can constuct efficiently
such designs:

Uniform Derandomization

Uniform Derandomization of BPP

Proof: Step 2/4

The Pseudorandom Generator

Lemma

For every integer n and fraction γ > 0, there is a
(`, n, log m)-design {S1, . . . ,Sm} over [`], where ` = O(n/γ) and
m = 2γn. Such a design can be constructed in O(2``m2) steps.

Now, we can formally define the NW-generator:

Definition

Let S = {S1, . . . ,Sm} a (`, n, d)-design and f : {0, 1}n → {0, 1}.
The NW-generator is the function NW f

S : {0, 1}` → {0, 1}m that
maps every z ∈ {0, 1}` to

NW f
S (z) = f (z|S1

) ◦ f (z|S2
) ◦ · · · ◦ f (z|Sm)

Uniform Derandomization

Uniform Derandomization of BPP

Proof: Step 2/4

The Pseudorandom Generator

Theorem

If S = {S1, . . . ,Sm} a (`, n, d)-design with m = 2d/10 and
f : {0, 1}n → {0, 1} satisfies H(f) > 22d , then the distribution

NW f
S (U`) is (H(f)

10 , 1
10)-pseudorandom.

Uniform Derandomization

Uniform Derandomization of BPP

Proof: Step 2/4

The Pseudorandom Generator

We can prove the above theorem using the corresponding (to
the toy-generator) lemma:

Lemma

Let f : {0, 1}n → {0, 1} be a Boolean function and
S = {S1, . . . ,Sm} is a (`, n, log m)-design. Suppose that
D : {0, 1}m → {0, 1} is such that:∣∣∣Prr [D(r) = 1]− Prz

[
D(NW f

S (z)) = 1
]∣∣∣ > ε

Then, there exists a circuit C of size O(m2) such that:

|Prx [D(C (x)) = f (x)]− 1/2| ≥ ε

m

Uniform Derandomization

Uniform Derandomization of BPP

Proof: Step 2/4

The Pseudorandom Generator

Our Main Lemma is the following:

Lemma

DGd ,1/5 →fn C f

Uniform Derandomization

Uniform Derandomization of BPP

Proof: Step 3/4

The Derandomization

Our main goal is to show that:
If this simulation fails on all input lengths for a given δ, then
∃d∀n, using an oracle for fn, we can construct a distinguisher
for Gd .

For each n, we will construct a Gn from nc → nd bits,
computable in pol-time with an fn oracle.

Given a Distinguisher for the output of the generator, we will
construct a circuit computing f .

We simulate a BPP algorithm as follows:

Let k be the input size.
BPP algorithm uses kc1 random bits!
Set: d = 2cc1/δ and n = kδ/2c

Compute the range of Gn, a set of nd = kc1 bit strings, in time

O
(
2nc
)

= O
(

2kδ
)

.

Uniform Derandomization

Uniform Derandomization of BPP

Proof: Step 3/4

The Derandomization

Lemma

If this algorithm fails to be in Subexponential Time 2n
δ
, then we

will have an efficient Distinguisher. That is, for some c , δ > 0,
DG f

d ,1/5 is efficiently constructible with oracle access to fn.

Proof Sketch:

Assume that the above algorithm is incorrect with probability
1/kd according to some sampleable distribution µk

Given n, we set k = n2c/δ and sample x1, . . . , xr (r = kO(1))
according to µk .

With high probability, the algorithm fails for one of x1, . . . , xr !

Let Di view its input as random sequence, and simulate the
BPP on xi using that random sequence.

Uniform Derandomization

Uniform Derandomization of BPP

Proof: Step 3/4

The Derandomization

Proof Sketch: (cont.)

D1, . . . ,Dr are produced in PPT, so, with high probability Di

distinguishes outputs of Gn from truly random strings.

We use the fn oracle to find which Di is actually a
distinguisher.

Assuming that error probability of BPP algorithm is 1/10, the

distinguisher is in DG f
d ,1/5. �

Uniform Derandomization

Uniform Derandomization of BPP

Proof: Step 4/4

Removing the Oracle

We saw that, if the conclusion of our Theorem fails, then we
have a PPT algorithm which ∀n, constructs a circuit for fn
using an oracle.

Recall that f is R.S.R and D.S.R.

This algorithm can be turned into a BPP algorithm for f !

Lemma

If f is D.S.R. and C f is efficiently constructible using oracle fn,
then f ∈ BPP.

Proof Sketch:

We recursively construct circuits C1 ∈ C f
1 , . . . ,Cn ∈ C f

n

Say we have computed Ci .

Uniform Derandomization

Uniform Derandomization of BPP

Proof: Step 4/4

Removing the Oracle

Proof Sketch: (cont.)

We run the (efficient) construction algorithm for C f
i+1 with

oracle fi+1 (with error α = 1/n2), simulating queries to fi+1

by RCi

|Ci | ≤(Time taken by the construction)≤ p(n), indepedent of
the size of Ci .

So, the time for each stage (including evaluating oracle calls)
is polynomial in n.

Also, the probability that Cn /∈ C f
n is at most α· n = 1/n, so

the error is bounded. �

Uniform Derandomization

Uniform Derandomization of BPP

Composing the Proof

So, what have we done?

Uniform Derandomization

Uniform Derandomization of RP

1 Uniform Derandomization of BPP
Main Theorem
Proof: Step 1/4
Proof: Step 2/4
Proof: Step 3/4
Proof: Step 4/4
Composing the Proof

2 Uniform Derandomization of RP
Refuters and their properties
Main Results

3 Uniform Derandomization of AM
Arthur-Merlin Games Reminder
Uniform Derandomization of AM
Gap Theorems for AM and similar classes

4 Other Notions and Consequences
Derandomization versus Circuit Lower Bounds
Typically-Correct Derandomization
Consequences to Dimension of Complexity Classes

Uniform Derandomization

Uniform Derandomization of RP

Refuters and their properties

How can we formalize Computational
Indistinguishability?

Leibniz: “Indistinguishable things are identical.”

As we saw, in Complexity Theory we consider as equal,
objects we cannot ”separate“ with any efficient procedure.

We can formalize this as:

Definition

A refuter is a (length-preserving) Turing Machine R, such that
R(1n) ∈ {0, 1}n.

Definition

Two languages L,M ⊆ {0, 1}∗ are t(n)-indistinguishable, denoted

as L
t(n)
= M, if for every deterministic t(n)-time refuter R we have

R(1n) /∈ L4M for all but finitely many n’s.

Uniform Derandomization

Uniform Derandomization of RP

Refuters and their properties

How can we formalize Computational
Indistinguishability?

A refuter is an adversasy, who, given specific computing
power, tries to distinguish a language (or a Boolean function)
from another.
If it fails, we consider the two languages equal.

Refuters can be deterministic, non-deterministic, or
probabilistic. In the case of non-determinism, refuter’s each
nondeterministic branch, on input 1n, either produces a string
in {0, 1}n, or is marked with reject.

We say that L and M are P-indistinguishable, denoted as

L
P
= M, if L

p(n)
= M for every polynmomial p(n).

Similarly for other classes (e.g. L
EXP
= M, L

SUBEXP
= M etc).

This setting can work also for infinitely many input sizes (i.o.
complexity).

Uniform Derandomization

Uniform Derandomization of RP

Refuters and their properties

How can we formalize Computational
Indistinguishability?

We can define the appropriate family of complexity classes:

Definition

For a complexity class C of languages over {0, 1}, we can define
the complexity class:

pseudoPC = {L ⊆ {0, 1}∗|∃M ∈ C such that L
P
= M}

The refuters above are required to fail almost everywhere at
producing a certain string (∈ L4M).
This requirement can be relaxed in i.o. complexity setting.

We can prove a “Time Hierarchy Theorem” for the pseudo

setting:

Uniform Derandomization

Uniform Derandomization of RP

Refuters and their properties

How can we formalize Computational
Indistinguishability?

Theorem

Let t2(n) be a constructible function, and let
t1(n) log t1(n) ∈ o(t2(n)). Then, for infinitely many input sizes:

DTIME (t2(n)) * pseudoDTIME (t1(n))

Uniform Derandomization

Uniform Derandomization of RP

Refuters and their properties

Variations of Refuters

Definition (Bounded-error probabilistic refuters)

Let t(n) be a time bound. Two languages L,M ⊆ {0, 1}∗ are
bounded-error probabilistically t(n)-indistinguishable, denoted as

L
BP−t(n)

= M, if for every probabilistic t(n)-time refuter R we have:

Pr [R(1n) /∈ L4M] ≥ 1− n−c

for every c ∈ N, and for all but finitely many n’s. Analogously:

pseudoBPPC = {L ⊆ {0, 1}∗|∃M ∈ C such that L
BP−p(n)

= M}

for every polynomial p(n).

Uniform Derandomization

Uniform Derandomization of RP

Refuters and their properties

Variations of Refuters

Definition (Zero-error probabilistic refuters)

Let t(n) be a time bound. Two languages L,M ⊆ {0, 1}∗ are
zero-error probabilistically t(n)-indistinguishable, denoted as

L
ZP−t(n)

= M, if for every probabilistic refuter R which halts within
time t(n) with probability at least n−c , for some c ∈ N and for all
by finitely many n’s we have:
R(1n) /∈ L4M, for at least one legal computation of R on input
1n which halts in time t(n). Analogously:

pseudoZPPC = {L ⊆ {0, 1}∗|∃M ∈ C such that L
ZP−p(n)

= M}

for every polynomial p(n).

Uniform Derandomization

Uniform Derandomization of RP

Refuters and their properties

Variations of Refuters

The phrase ”for all by finitely many n’s” can be replaced by
”for infinitely many n’s” in the two above definitions.

Refuters, as we defined them, are uniform adversaries.

Using our new formalism, we can restate IW98 Theorem (the
Uniform BPP Derandomization Main Theorem) as follows:

Theorem (IW98)

If BPP 6= EXP, then, for infinitely many input sizes:

BPP ⊆ pseudoBPPSUBEXP

Recall that
SUBEXP =

⋂
ε>0

DTIME
(
2n

ε)
.

Uniform Derandomization

Uniform Derandomization of RP

Main Results

Uniform Derandomization of RP

Theorem 1

If ZPP 6= EXP, then, for infinitely many input sizes:

RP ⊆ pseudoZPPSUBEXP

Theorem 2

At least one of the following holds:

1 ZPP = BPP

2 RP ⊆ pseudoZPPSUBEXP infinitely often

Uniform Derandomization

Uniform Derandomization of RP

Main Results

Uniform Derandomization of RP

Proof (of Theorem 1):

Suppose that the conclusion does not hold.

Then, Theorem 2⇒ BPP = ZPP.

On the other hand, we also have:

BPP * pseudoBPPSUBEXP
IW 98
=⇒ BPP = EXP⇒

⇒ ZPP = EXP Contradiction!

�

Uniform Derandomization

Uniform Derandomization of RP

Main Results

Uniform Derandomization of RP

Proof Sketch (of Theorem 2):

Based on the notion of Natural Proofs [RR94]

Conjecture:

There are no natural predicates which are nc-useful, for
some c ∈ N.

So, we can use the truth tables of (non-uniformly) easy
functions instead of random strings, and accept if at least one
of them works.

The resulting deterministic simulation run in subexponential
time, since there are few easy functions.

If the simulation fails in the uniform setting, we obtain a
natural predicate which can be used as a hardness test.

Uniform Derandomization

Uniform Derandomization of RP

Main Results

Both BPP and RP results, can be stated as Gap Theorems,
providing an alternative interpretation:

Theorem (IW98)

Either:

1 BPP = EXP

2 For any ε > 0, every BPP algorithm can be simulated in
deterministic time 2n

ε
, so that this simulations seems correct

to any Bounded-error probabilistic refuter infinitely often.

Theorem (Kab00)

Either:

1 ZPP = EXP

2 For any ε > 0, every RP algorithm can be simulated in
deterministic time 2n

ε
, so that this simulations seems correct

to any Zero-error probabilistic refuter infinitely often.

Uniform Derandomization

Uniform Derandomization of AM

1 Uniform Derandomization of BPP
Main Theorem
Proof: Step 1/4
Proof: Step 2/4
Proof: Step 3/4
Proof: Step 4/4
Composing the Proof

2 Uniform Derandomization of RP
Refuters and their properties
Main Results

3 Uniform Derandomization of AM
Arthur-Merlin Games Reminder
Uniform Derandomization of AM
Gap Theorems for AM and similar classes

4 Other Notions and Consequences
Derandomization versus Circuit Lower Bounds
Typically-Correct Derandomization
Consequences to Dimension of Complexity Classes

Uniform Derandomization

Uniform Derandomization of AM

Arthur-Merlin Games Reminder

Arthur-Merlin Games Definition

King Arthur doesn’t trust wizard Merlin, but he recognizes his
”supernatural” abilities.

Merlin wants to convince the King that a string x belongs to
a certain language L.

So, Merlin plays the role of the prover, and Arthur the role of
the verifier.

Also (unlike regular IPs), Merlin is able to read the whole
history of the computation of Arthur on the given input,
including the random coin tosses made by Arthur!

So, AM is the class of languages L with an interactive proof,
in which the verifier sends a random string, and the prover
responding with a message, where the verifier’s decision is
obtained by applying a deterministic polynomial-time
algorithm to the message.

Uniform Derandomization

Uniform Derandomization of AM

Arthur-Merlin Games Reminder

Arthur-Merlin Games Definition

Also, the class MA consists of all languages L, where there’s
an interactive proof for L in which the prover first sending a
message, and then the verifier is ”tossing coins” and
computing its decision by doing a deterministic
polynomial-time computation involving the input, the message
and the random output.

Definition

A language L is in AM if ∃ relation M ∈ NP, and m = poly(n),
such that ∀x ∈ {0, 1}n:

x ∈ L⇒ Pry∈{0,1}m [M(x , y) = 1] ≥ 3

4

x /∈ L⇒ Pry∈{0,1}m [M(x , y) = 1] <
1

4

Uniform Derandomization

Uniform Derandomization of AM

Arthur-Merlin Games Reminder

Arthur-Merlin Games Definition

By AM[k] we denote the k-round interaction between Arthur
(Verifier) and Merlin (Prover).

By AM-TIME(t(n)) we denote the Arthur-Merlin proof that
takes t(n) computational steps.

MA ⊆ AM

It should be clear that MA[1] = NP, AM[1] = BPP

AM = BP·NP

The Arthur-Merlin Hierarchy (AM proof systems wih bounded
number of rounds):

AM[0] ⊆ AM[1] ⊆ · · · ⊆ AM[k] ⊆ AM[k + 1] ⊆ · · ·

collapses to the second level: AM[k] = AM[2], for constants
k ≥ 2.

IP[k] ⊆ AM[k + 2]

If coNP ⊆ AM, then: Σp
2 = Πp

2 = AM.

Uniform Derandomization

Uniform Derandomization of AM

Uniform Derandomization of AM

Uniform Derandomization of AM

Theorem (Lu00)

At least one of the following holds:

1 AM = NP

2 NP ⊆ pseudoNPSUBEXP infinitely often.

Uniform Derandomization

Uniform Derandomization of AM

Uniform Derandomization of AM

Uniform Derandomization of AM

Theorem

coNP ∩ AM ⊆
⋂
ε>0

pseudoNPNTIME
(
2n

ε)
Since GNI is in both AM and coNP, the above theorem
implies that either GNI ∈ NP, or it can be simulated in
deterministic subexponential time, and the simulation is
correct for the point of view of any nondeterministic
polynomial-time refuter.

Corollary

GNI ∈
⋂
ε>0

pseudoNPNTIME
(
2n

ε)
The above inclusions hold for infinitely many n’s.

Uniform Derandomization

Uniform Derandomization of AM

Uniform Derandomization of AM

Other Results (focusing on Time vs. Space)

Theorem

Either:

1 DTIME(t(n)) ⊆
⋂
ε>0 DSPACE(tε(n)) infinitely often for

any function t(n) = 2Ω(n), or

2 P = BPP and AM = NP and PH ⊆ ⊕P

Theorem

Either:

1 DTIME(t(n)) ⊆
⋂
ε>0 DSPACE

(
2logε t(n)

)
infinitely often for

any function t(n) = 2Ω(n), or

2 BPP ⊆ QuasiP and AM ⊆ NQuasiP and PH ⊆ ⊕QuasiP

Uniform Derandomization

Uniform Derandomization of AM

Uniform Derandomization of AM

Other Results (focusing on Time vs. Space)

Theorem

Either:

1 DTIME(t(n)) ⊆ DSPACE(poly(log t(n))) infinitely often for
any function t(n) = 2Ω(n), or

2 BPP ⊆ SUBEXP and AM ⊆ NSUBEXP and
PH ⊆ ⊕SUBEXP

Recall that:

QuasiP = DTIME
(
2poly(log n)

)
NQuasiP = NTIME

(
2poly(log n)

)
⊕QuasiP = ⊕TIME

(
2poly(log n)

)
SUBEXP = ∩ε>0DTIME

(
2n

ε)
NSUBEXP = ∩ε>0NTIME

(
2n

ε)
⊕SUBEXP = ∩ε>0 ⊕ TIME

(
2n

ε)

Uniform Derandomization

Uniform Derandomization of AM

Gap Theorems for AM and similar classes

The High-End

Theorem

If E * AM-TIME(2εn), for some ε > 0, then for all c > 0, and
infinitely many input sizes, we have:

AM ⊆ pseudoNTIME(nc)NP

”Gap Theorem“ interpretation: Either AM is almost as
powerful as E, or AM is no more powerful than NP from the
point of view of any non-deterministic efficient observer!

Uniform Derandomization

Uniform Derandomization of AM

Gap Theorems for AM and similar classes

The High-End

Why be interested in AM ∩ coAM:

PZK ⊆ SZK ⊆ AM ∩ coAM

We also have a similar gap-theorem for AM ∩ coAM

Theorem

If E * AM-TIME(2εn), for some ε > 0, then, for infinitely many
input sizes:

AM ∩ coAM ⊆ NP ∩ coNP

Indeed, in the above Theorem we can (non-trivially of course)
get rid of ”infinitely often” setting, and go up to ”almost
everywhere” complexity:

Uniform Derandomization

Uniform Derandomization of AM

Gap Theorems for AM and similar classes

The High-End

Theorem

If E * AM-TIME(2εn), for some ε > 0, then, for all but finitely
many input sizes:

AM ∩ coAM ⊆ NP ∩ coNP

The following theorem concerns Derandomization of AM
under the assumption that there is a hard function in NE:

Theorem

If NE ∩ coNE * AM-TIME(2δn), for some δ > 0, then, for
infinitely many n’s, and for every c, ε > 0:

AM ⊆ pseudoNTIME(nc)NTIME
(
2n

ε)
And also, for every ε > 0:

AM ∩ coAM ⊆ NTIME
(
2n

ε) ∩ coNTIME
(
2n

ε)

Uniform Derandomization

Uniform Derandomization of AM

Gap Theorems for AM and similar classes

The Low-End

Theorem

There exists a language A complete for E (resp. EXP), such that
for every time-constructible function t: m < t(m) < 2m, either:

1 A has an Arthur-Merlin protocol running in time t(m)

2 for any language L ∈ AM there is a nondeterministic machine
M that runs in time 2O(m) (resp. 2m

O(1)
) on inputs of length

n = t(m)Θ(1/(log m−log log t(m))2) (resp. n = t(m)Θ(1/(log m)2))
such that for any refuter R running in time t(m) when
producing strings of length n, there are infinitely many n’s on
which L and L(M) are t(m)-indistinguishable.

Uniform Derandomization

Uniform Derandomization of AM

Gap Theorems for AM and similar classes

The Low-End

Theorem

There exists a language A complete for E (resp. EXP), such that
for every time-constructible function t: m < t(m) < 2m, either:

1 A has an Arthur-Merlin protocol running in time t(m)

2 for any language L ∈ AM ∩ coAM there is a nondeterministic
machine M that runs in time 2O(m) (resp. 2m

O(1)
) on inputs

of length n = t(m)Θ(1/(log m−log log t(m))2) (resp.
n = t(m)Θ(1/(log m)2)) such that for any refuter R running in
time t(m) when producing strings of length n, there are
infinitely many n’s on which L and L(M) are
t(m)-indistinguishable.

And, like the theorem of the previous section, we can extract
the ”infinitely often” setting and have a more general result.

Uniform Derandomization

References

Further Reading 1

Andrew C. Yao, Theory and application of trapdoor functions,
SFCS82: Proceedings of the 23rd Annual Symposium on
Foundations of Computer Science, pages 80-91, 1982.

Manuel Blum and Silvio Micali, How to generate cryptographically
strong sequences of pseudo-random bits, SIAM J. Comput., 13:850-
864, November 1984

L.Babai, L.Fortnow, N.Nisan, and A.Wigderson, BPP has
subexponential time simulations unless EXPTIME has publishable
proofs, Comput. Complex., 3(4):307-318, 1993

Noam Nisan and Avi Wigderson. Hardness vs Randomness, J.
Comput. Syst. Sci., 49(2):149-167, 1994

Russell Impagliazzo and Avi Wigderson, P=BPP unless E has sub-
exponential circuits: Derandomizing the XOR lemma, In
Proceedings of the 29th STOC, pages 220-229. ACM Press, 1997.

Uniform Derandomization

References

Further Reading 2

Russell Impagliazzo and Avi Wigderson.Randomness vs Time:
De-Randomization under a Uniform Assumption, In FOCS, pages
734- 743, 1998.

Valentine Kabanets. Easiness assumptions and hardness tests:
Trading time for zero error, In Proceedings of the 15th Annual IEEE
Conference on Computational Complexity, COCO 00, pages 150-,
Washington, DC, USA, 2000. IEEE Computer Society

Chi-Jen Lu. Derandomizing Arthur-Merlin Games under Uniform
Assumptions, Computational Complexity, 10:247-259, 2000.

Christopher Umans, Pseudo-random generators for all hardness,
Journal of Computer and System Science, pages 419-440, 2003.

Dan Gutfreund, Ronen Shaltiel, and Amnon Ta-Shma. Uniform
hardness versus randomness tradeoffs for Arthur-Merlin games,
Comput.Complex., 12:85-130, September 2003.

Uniform Derandomization

References

Further Reading 3

Ronen Shaltiel and Christopher Umans, Low-end uniform hardness
versus randomness tradeoffs for AM, SIAM J. Comput.,
39(3):1006-1037, 2009.

Ronen Shaltiel, Typically-correct derandomization, SIGACT News,
41(2):57-72, 2010.

Uniform Derandomization

References

Thank You!

	Uniform Derandomization of BPP
	Main Theorem
	Proof: Step 1/4
	Proof: Step 2/4
	Proof: Step 3/4
	Proof: Step 4/4
	Composing the Proof

	Uniform Derandomization of RP
	Refuters and their properties
	Main Results

	Uniform Derandomization of AM
	Arthur-Merlin Games Reminder
	Uniform Derandomization of AM
	Gap Theorems for AM and similar classes

	Other Notions and Consequences
	Derandomization versus Circuit Lower Bounds
	Typically-Correct Derandomization
	Consequences to Dimension of Complexity Classes

	References

