
Convex Optimization and Max Flow

Optimization and Machine Learning Seminar, NTUA December 2018

These notes are intended as reference notes for participants of the Optimization and Machine
Learning Seminar in NTUA. Thus, they are in no way complete or free of errors. Please exercise
critical thinking and don’t take anything for granted.

1. Convex Optimization

In Convex Optimization one wishes to (approximately) minimize a convex function. Specifi-
cally, given f : X ⊆ Rm → R such that f is convex and some allowed error ε > 0, the goal is to
compute an x such that f(x) ≤ f(x∗) + ε, where x∗ = argmin

x
f(x).

One of the most common procedures to achieve this goal is to use an iterative algorithm,
in which one produces a sequence of estimates x0, . . . ,xT , each one given as a function of the
previous ones. More specifically, the most well known such algorithm is probably the gradient
descent algorithm, given by

xt+1 = xt − η∇f(xt)

where η ∈ R is called a step size and is there to scale the gradient appropriately. Despite its
simplicity, the gradient descent algorithm has proven to be extremely versatile.

Most algorithms of the form described above require f to satisfy some extra properties in order
to get a meaningful bound on the number of iterations. The most well known such properties are
the following:

• G-Lipschitzness:
|f(y)− f(x)| ≤ G‖y − x‖2 ∀x, y ∈ X

or equivalently, if f is differentiable,

‖∇f(x)‖2 ≤ G ∀x ∈ X
• L-smoothness:

‖∇f(y)−∇f(x)‖2 ≤ L‖y − x‖2 ∀x, y ∈ X
or equivalently, if f is twice differentiable,

zT∇2f(x)z ≤ L ∀x ∈ X, z ∈ Rm

• `-strong convexity:

‖∇f(y)−∇f(x)‖2 ≥ `‖y − x‖2 ∀x, y ∈ X
or equivalently, if f is twice differentiable,

zT∇2f(x)z ≥ `‖z‖22 ∀x ∈ X, z ∈ Rm

• Bounded radius:

‖x0 − x∗‖2 ≤ D

(Note: Some of the above definitions require a (twice) differentiable function but can be ap-
propriately modified for functions that are not)

The main mathematical tool behind these algorithms is Taylor’s theorem, from which we use
the following corollary:

1

2 CONVEX OPTIMIZATION AND MAX FLOW

Theorem 1.1. If f is twice differentiable and for appropriately small ‖y − x‖2, we have

f(y) = f(x) +∇f(x)T (y − x) +
1

2
(y − x)T∇2f(x)(y − x) + o(‖y − x‖22)

The following are some properties that directly follow from the above definitions and Taylor’s
theorem.

Lemma 1.2. f is convex iff f(y) ≥ f(x) +∇f(x)T (y − x) for all x, y ∈ X.

Lemma 1.3. f is L-smooth iff f(y) ≤ f(x) +∇f(x)T (y − x) + 1
2L‖y − x‖

2
2 for all x, y ∈ X.

Lemma 1.4. f is `-strongly convex iff f(y) ≥ f(x)+∇f(x)T (y−x)+ 1
2`‖y−x‖

2
2 for all x, y ∈ X.

2. Results

2.1. Smooth functions. Let’s begin by assuming that our function is L-smooth wrt the `2 norm.
We will see that we will also need a bounded radius.

This means that

f(xt+1) ≤ f(xt) +∇f(xt)T (xt+1 − xt) +
L

2
‖xt+1 − xt‖22

and naturally, given xt, one would want to minimize f(xt+1), or instead its upper bound

f(xt) +∇f(xt)T (xt+1 − xt) +
L

2
‖xt+1 − xt‖22

Therefore setting xt+1 = xt + δ, δ will be given by

min
δ

f(xt)T δ +
L

2
‖δ‖22 ⇔ ∇f(xt) + Lδ = 0⇔ δ = − 1

L
∇f(xt)

so the step is

xt+1 = xt − 1

L
∇f(xt)

which is gradient descent with η = 1
L .

How to measure progress? The natural thing is to track the decrease in function value after
every step, i.e. establish a lower bound on f(xt)− f(xt+1). From the L-smoothness property, we
have

f(xt)− f(xt+1) ≥ −∇f(xt)T (xt+1 − xt)− L

2
‖xt+1 − xt‖22

=
1

2L
‖∇f(xt)‖22

This is good news, since it is saying “Large gradients imply fast convergence”. What happens
when the gradient is small? Convexity should imply that we are already close to optimality.
Specifically,

f(xt)− f(x∗) ≤ ∇f(xt)T (xt − x∗) ≤ ‖∇f(xt)‖2‖xt − x∗‖2
As we will show, ‖xt − x∗‖2 ≤ D, and so

f(xt)− f(xt+1) ≥ 1

2L
‖∇f(xt)‖22 ≥

(f(xt)− f(x∗))2

2LD2

Denoting y(t) = f(xt)− f(x∗) and extending it linearly to real values of t it suffices to solve

dy(t)

dt
= − (y(t))2

2LD2
⇔ dy(t)

(y(t))2
= − dt

2LD2
⇔ 1

y(t)
=

t

2LD2
+ c

which gives us

f(xt)− f(x∗) ≤ 2LD2

t

CONVEX OPTIMIZATION AND MAX FLOW 3

Since we want ε error it’s enough to guarantee

2LD2

T
≤ ε⇔ T ≥ 2LD2

ε

so O
(
LD2

ε

)
iterations are enough for optimization of smooth functions.

Note: This bound can be improved to O

(√
LD2

ε

)
using Nesterov’s accelerated gradient de-

scent.

To finish off, we need to show that ‖xt−x∗‖2 ≤ D for all t. We will show something stronger,
i.e. that ‖xt+1 − x∗‖2 ≤ ‖xt − x∗‖2 and the result will follow by induction. Specifically,

‖xt+1 − x∗‖22 − ‖xt − x∗‖22
= ‖xt+1 − xt‖22 + 2(xt+1 − xt)T (xt − x∗) (cosine theorem)

≤ ‖xt+1 − xt‖22 +
2

L
(f(x∗)− f(xt)) (smoothness and choice of gradient)

≤ ‖xt+1 − xt‖22 +
2

L
(f(xt+1)− f(xt))

≤ ‖xt+1 − xt‖22 −
1

L2
‖∇f(xt)‖22 (choice of gradient)

= 0

2.2. Smooth and strongly convex functions. If our function is `-strongly convex in addition
to L-smooth, we get much faster convergence. In particular, we run the same algorithm as for the
previous section so we know that

f(xt)− f(xt+1) ≥ 1

2L
‖∇f(xt)‖22

but now we can get a much better lower bound for the RHS because of `-strong convexity:

‖∇f(xt)‖22 ≥
(f(xt)− f(x∗))2

‖xt − x∗‖22
≥ `

2
(f(xt)− f(x∗))

Therefore

f(xt)− f(xt+1) ≥ `

4L
(f(xt)− f(x∗)) =

1

4κ
(f(xt)− f(x∗))

where κ = L
` is called the condition number of f . So now

f(xt+1)− f(x∗) ≤(1− 1

4κ
)(f(xt)− f(x∗))

≤ . . .

≤(1− 1

4κ
)t+1(f(x0)− f(x∗))

≤e− t
4κ (f(x0)− f(x∗))

(where we used 1 − x ≤ e−x) and so to achieve ε error T = O
(
κ log f(x0)−f(x∗)

ε

)
iterations are

enough. Note: This bound can be improved to O
(√

κ log f(x0)−f(x∗)
ε

)
using Nesterov’s accelerated

gradient descent.

4 CONVEX OPTIMIZATION AND MAX FLOW

2.3. Lipschitz functions. If our function is not smooth but is G-Lipschitz lower bounding the
function value decrease in each iteration as above is not possible. Instead, we use a potential
argument in the lines of “While the function value is large, we are moving fast towards the
optimum”. The algorithm will be (sub)gradient descent (because f might not be differentiable,
∇f(x) denotes any vector g such that f(y) ≥ f(x) + gT (y − x) for all y), given by xt+1 =
xt − η∇f(xt), for some still undetermined step size η.

Now, convexity gives

f(xt)− f(x∗) ≤∇f(xt)T (xt − x∗)

=
1

η
(xt − xt+1)T (xt − x∗)

On the other hand, the decrease of the distance to the optimum is

‖xt − x∗‖22 − ‖xt+1 − x∗‖22 =‖xt − xt+1‖22 + 2(xt+1 − x∗)T (xt − xt+1)

=‖xt − xt+1‖22 + 2(xt − x∗)T (xt − xt+1) + 2(xt+1 − xt)T (xt − xt+1)

=− ‖xt − xt+1‖22 + 2(xt − x∗)T (xt − xt+1)

≥− η2‖∇f(xt)‖22 + η(f(xt)− f(x∗))

so after T iterations this gives

1

T

∑
t

(f(xt)− f(x∗)) ≤ 1

ηT
(‖x0 − x∗‖22 − ‖xT − x∗‖22) + ηG2

≤D
2

ηT
+ ηG2

≤DG√
T

for η = D
G
√
T

.

Since f is convex, setting x̄ = 1
T

∑
t
xt we get

f(x̄)− f(x∗) ≤ 1

T

∑
t

(f(xt)− f(x∗)) ≤ DG√
T
≤ ε

so T = O(D
2G2

ε2) iterations are enough.

2.4. Lipschitz and strongly convex functions. We proceed similarly to the previous section,

only with a variable step size ηt, and get T = O(G
2

`ε) iterations.

2.5. Minimization over convex domain. All of the results that we have seen so far can be
adapted to work with constrained optimization problems, where x is constrained in some convex
set X. This can be done by projecting to the feasible region after each gradient descent step. Note
that it is often non-trivial whether this projection can be computed efficiently.

2.6. Gradient Descent for general norms. Gradient descent can be adapted to cope with
functions which are smooth/strongly convex with respect to a different norm. The only thing
that changes from the definitions is that gradients are measured in the dual norm and from the
statements that the radius bound is not ‖x0 − x∗‖ but max

x:f(x)≤f(x0)
‖x − x∗‖. The algorithm also

changes, since now the step is given by the minimization problem

min
δ

f(xt)T δ +
L

2
‖δ‖2

CONVEX OPTIMIZATION AND MAX FLOW 5

so for different norms ‖ · ‖, the step is in a different direction. For example, for the `∞ norm, we
have

xt+1 = xt − η sign(∇f(xt))

3. Max Flow using Gradient Descent

3.1. Problem. Given a graph G(V ,E) and a pair of designated nodes s and t, the Max Flow
problem asks to send the maximum amount of flow from s to t while not exceeding the edge
capacities. Here we will concentrate on the case of an undirected graph G (i.e. flow can go both
ways) with unit capacities. However note that for convenience we will assign an arbitrary reference
direction to edges in E, so we will be treating E as a set directed edges from now on.

We would like to encode this as a convex program. If we denote the flow on the graph by a
vector x ∈ Rm, where xi is the flow on edge i, the capacity constraint is precisely ‖x‖∞ ≤ 1.
Now, given the max flow value F ∗, the flow constraints are as follows:

∑
(u,v)∈E

xuv −
∑

(v,u)∈E

xvu =


F ∗, if u ≡ s
−F ∗, if u ≡ t
0, otherwise

for all u ∈ V . These (linear) constraints can be written succinctly in the form BTx = F ∗χst,
where B ∈ Rm×n is the “edge-vertex” incidence matrix of G, given by

Beu = B(a,b),u =


1, if u ≡ a
−1, if u ≡ b
0, otherwise

and χst ∈ Rn is the characteristic vector of the demand, given by

χst(u) =


1, if u ≡ s
−1, if u ≡ t
0, otherwise

Therefore we have reduced the problem to finding an x ∈ Rm such that ‖x‖∞ ≤ 1 and
BTx = F ∗χst. If we divide everything by F ∗ equivalently we are asked to find an x such that
‖x‖∞ ≤ 1

F∗ and BTx = χst, or equivalently solving

min ‖x‖∞
BTx = χst

Note that since we are computing an approximate solution x, this will correspond to an
approximate max flow, so to set up the problem appropriately we are asking for a (1 + γ)-

approximate max flow in the sense that F ≥ F∗

1+γ . Note 1
F = ‖x‖∞ ≤ ‖x∗‖∞ + ε = 1

F∗ + ε

therefore setting ε = γ
F∗ suffices.

3.2. Computing the projection. In order to be able to solve this with an iterative algorithm,
we have to be able to project any x ∈ Rm on the affine constraint BTx = χst. In other words, we
need to be able to solve

min
x′
‖x′ − x‖22

BTx′ = χst

This can be solved by solving a linear system. However, our linear system has special structure,
as it is a Laplacian system. By employing the seminal result of Spielman and Teng [ST04], we can

6 CONVEX OPTIMIZATION AND MAX FLOW

solve Laplacian systems in Õ(m log 1
ε) time, therefore we can compute these projections efficiently.

(Note: Here ε is the error of the linear system solution, in some appropriately defined norm)

3.3. Algorithm 1: Subgradient Descent. Since ‖x‖∞ is not a smooth or a strongly convex
function, the only black box algorithm we can apply from the previous section is the Subgradient

Descent. Remember that the number of iterations for to get an ε-approximate solution is O(D
2G2

ε2).

We have

x0 = {argmin
x
‖x− 0‖22, s.t. BTx = χst}

and

D2 = ‖x0 − x∗‖22 ≤ 2(‖x0‖22 + ‖x∗‖22) ≤ 4‖x∗‖22 ≤ 4m‖x∗‖2∞ ≤ O
(

m

(F ∗)2

)
Furthermore, since the absolute function is 1-Lipschitz, we have G2 =

m∑
i=1

12 ≤ m. Combining

everything together, we get

T = O

(
m

(F∗)2m

(γ
F∗)2

)
= O

(
m2

γ2

)
iterations and a total runtime of

Õ

(
m3

γ2

)
This matches (up to the fact that it is an (1 + γ)-approximate max flow) the Edmonds-Karp
algorithm for sparse graphs.

3.4. Algorithm 2: Smoothing. In order to exploit the GD analysis for smooth functions, it
makes sense to replace ‖x‖∞ by a smooth approximation of it. Specifically, we will use the softmax
function, defined by

smaxη(x) = η log


∑
i

(
exi/η + e−xi/η

)
2m


One can easily prove that smaxη is 1

η -smooth with respect to the `2 norm. Furthermore,

‖x‖∞ − η log(2m) ≤ smaxη(x) ≤ ‖x‖∞

This means that setting η = ε/ log(2m) = γ
F∗ log(2m) is enough to let us optimize smaxη(x) instead

of ‖x‖∞.

Now we can apply the analysis for smooth functions, which gives

T = O

(
LD2

ε

)
= O

 F∗ log(2m)
γ

m
(F∗)2

γ
F∗

 = Õ

(
m

γ2

)

for a total runtime of Õ
(
m2

γ2

)
. Note, however, that we can improve this by using the guarantee

of accelerated gradient descent! This gives us a runtime of Õ
(
m3/2

γ

)
and matches (up to the

fact that it is an (1 + γ)-approximate max flow) Goldberg and Rao’s long-standing runtime of

Õ
(
m3/2

)
! [GR98]

CONVEX OPTIMIZATION AND MAX FLOW 7

3.5. Algorithm 3: `∞-based Gradient Descent. To further improve the runtime, the al-
gorithm has to capture the geometry of the problem in a better way. In particular, smaxη is
1
η -smooth with respect to the `∞ norm (a stronger condition than with respect to `2 norm), so

we might as well run `∞-based gradient descent.

However, one problem is that computing an `∞ projection on the affine constraint BTx = χst
is hard (if we could do it efficiently, we would immediately solve our initial problem since x∗

is the `∞ projection of 0 on the affine constraint). Fortunately, it turns out that there exists
a certain linear projection operator P that performs an approximate `∞ projection onto the
constraint BTx = χst. This operator is called an oblivious routing and has the property that
‖P‖∞ ≤ mo(1).

Putting everything together carefully, one finally gets an almost-linear runtime of Õ
(
m1+o(1)

γ2

)
[KLOS14]. With more work it is also possible to get a nearly-linear runtime of Õ

(
m
γ

)
for this

problem [Pen16, She17].

References

[GR98] Andrew V Goldberg and Satish Rao. Beyond the flow decomposition barrier. Journal of the ACM
(JACM), 45(5):783–797, 1998.

[KLOS14] Jonathan A Kelner, Yin Tat Lee, Lorenzo Orecchia, and Aaron Sidford. An almost-linear-time algorithm

for approximate max flow in undirected graphs, and its multicommodity generalizations. In Proceedings
of the twenty-fifth annual ACM-SIAM symposium on Discrete algorithms, pages 217–226. SIAM, 2014.

[Pen16] Richard Peng. Approximate undirected maximum flows in o (m polylog (n)) time. In Proceedings of
the twenty-seventh annual ACM-SIAM symposium on Discrete algorithms, pages 1862–1867. Society

for Industrial and Applied Mathematics, 2016.

[She17] Jonah Sherman. Area-convexity, l &infty; regularization, and undirected multicommodity flow. In Pro-
ceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing, pages 452–460. ACM,

2017.

[ST04] Daniel A Spielman and Shang-Hua Teng. Nearly-linear time algorithms for graph partitioning, graph
sparsification, and solving linear systems. In Proceedings of the thirty-sixth annual ACM symposium

on Theory of computing, pages 81–90. ACM, 2004.

	1. Convex Optimization
	2. Results
	2.1. Smooth functions
	2.2. Smooth and strongly convex functions
	2.3. Lipschitz functions
	2.4. Lipschitz and strongly convex functions
	2.5. Minimization over convex domain
	2.6. Gradient Descent for general norms

	3. Max Flow using Gradient Descent
	3.1. Problem
	3.2. Computing the projection
	3.3. Algorithm 1: Subgradient Descent
	3.4. Algorithm 2: Smoothing
	3.5. Algorithm 3: -based Gradient Descent

	References

