
Online Learning and Mirror Descent

Optimization and Machine Learning Seminar, NTUA December 2018

These notes are intended as reference notes for participants of the Optimization and Machine
Learning Seminar in NTUA. Thus, they are in no way complete or free of errors. Please exercise
critical thinking and don’t take anything for granted.

1. Online Learning

In the Online Learning problem (also called Regret minimization problem) we wish to minimize
the empirical loss, given that the data is provided to us sequentially (in an online fashion). More
specifically, given some loss function l : A × Z where A is a set of actions (which can also be
thought of as a hypothesis space in the context of statistical learning) and Z the set of possible
data points, we are asked to come up with a sequence of actions (a1, . . . , aT ) ∈ AT that minimize
the regret of our strategy (which is essentially an online empirical loss):∑

t

l(at, zt)−min
a∈A

∑
t

l(a, zt)

Moreover, each action at has to be decided by the algorithm before the corresponding data point
zt is revealed. Essentially we are asked to provide an online sequence of actions whose total loss
is comparable with that of the best fixed action in hindsight.

Of course, as stated, the Online Learning problem is extremely general. In order for us to have
any chance of solving it, we should make some assumptions on the structure of the sets A and
Z as well as the loss function l. There are numerous such special cases that are very interesting
from a Machine Learning point of view.

1.1. Learning from experts. One particular well known special case of the Online Learning
problem is the Learning from experts framework. In this framework, we assume to have n experts,
each with their own sequence of actions and we wish to predict binary outcomes over a sequence
of rounds. Specifically, in each round t, each player’s action bt(i) ∈ A for that round is revealed,
and depending on those, we are asked to decide our action at (probabilistically). Let’s assume
binary actions and outcomes A = Z = {0, 1} and a loss function l(x, y) = 1x 6=y.

More concretely, in each round we will keep track of a convex combination pt of the expert
actions (essentially a probability distribution over experts) and let lt(i) ∈ {0, 1} be the loss of the
i-th expert in the t-th round. The goal is to minimize the expected regret:

RT =
∑
t≤T

n∑
i=1

pt(i)lt(i)− min
1≤i≤n

∑
t≤T

lt(i)

A natural way to try to update pt is to scale down the weights of experts i that made a
mistake, i.e. lt(i) = 1. Indeed, the following strategy, called Multiplicative Weight Update, gives
asymptotically optimal regret:

pt(i) =
e
−η

∑
t′<t

lt(i)

n∑
i=1

e
−η

∑
t′<t

lt(i)

1



2 ONLINE LEARNING AND MIRROR DESCENT

Here η > 0 is a parameter to be chosen.

It is easy to notice that this strategy can be implemented as follows (hence its name): After
every round t, we scale the weight of each expert that mispredicted by a factor of e−η and then
normalize the weights to yield a probability distribution.

The following theorem can be proved:

Theorem 1.1. For any 0 < η < 1/2 and any expert i the Mutliplicative Weight Update as
described above achieves a total loss of∑

t≤T

n∑
i=1

pt(i)lt(i) ≤
∑
t≤T

lt(i) + η
∑
t≤T

lt(i) +
log n

η

By upper bounding the above quantity by
∑
t≤T

lt(i) + ηT + logn
η and setting η =

√
logn
T , we

immediately get

RT ≤
√
T log n

This is pretty impressive, since it means that, up to a sublinear term in the number of rounds, we
will perform as well as the best expert in hindsight! This also shows that if we need the average

regret to be at most ε, then after Θ
(

logn
ε2

)
rounds this is automatically guaranteed.

It should be mentioned that the Multiplicative Weights Update algorithm is an extremely
versatile tool in algorithm design as well. Some of its uses include approximately solving Linear
Programs, efficiently computing spectral sparsifiers, etc. Interestingly, as we will see, this seem-
ingly ad-hoc algorithm can be seen as a special case of a more general optimization algorithm
called Mirror Descent.

2. Mirror Descent

We first consider the proof of subgradient descent for Lipschitz and bounded radius convex
functions from the previous lecture, which we reproduce here for completeness. Then, we will
generalize it to yield a whole family of algorithms that depends on the choice of the norm ‖ · ‖
defining the gradient step.

2.1. Subgradient Descent. If our function is not smooth but is L-Lipschitz lower bounding
the function value decrease in each iteration as above is not possible. Instead, we use a potential
argument in the lines of “While the function value is large, we are moving fast towards the
optimum”. The algorithm will be (sub)gradient descent (because f might not be differentiable,
∇f(x) denotes any vector such that f(y) ≥ f(x) + ∇f(x)T (y − x) for all y), given by xt+1 =
xt − η∇f(xt), for some still undetermined step size η.

f(xt)− f(x∗) ≤∇f(xt)T (xt − x∗)

=
1

η
(xt − xt+1)T (xt − x∗)

On the other hand, we have

‖xt − x∗‖22 − ‖xt+1 − x∗‖22 =‖xt − xt+1‖22 + 2(xt+1 − x∗)T (xt − xt+1)

=‖xt − xt+1‖22 + 2(xt − x∗)T (xt − xt+1) + 2(xt+1 − xt)T (xt − xt+1)

=− ‖xt − xt+1‖22 + 2(xt − x∗)T (xt − xt+1)

≥− η2‖∇f(xt)‖22 + η(f(xt)− f(x∗))



ONLINE LEARNING AND MIRROR DESCENT 3

so after T iterations this gives

1

T

∑
t

(f(xt)− f(x∗)) ≤ 1

ηT
(‖x0 − x∗‖22 − ‖xT − x∗‖22) + ηL2

≤R
2

ηT
+ ηL2

≤RL√
T

for η = R
L
√
T

.

Since f is convex, setting x̄ = 1
T

∑
t
xt we get

f(x̄)− f(x∗) ≤ 1

T

∑
t

(f(xt)− f(x∗)) ≤ RL√
T
≤ ε

so T = O(R
2L2

ε2 ) iterations are enough.

2.2. General norms. Remember that the gradient descent step xt+1 = xt−η∇f(xt) essentially
comes from the optimal solution to the following optimization problem:

min
δ
∇f(xt)T δ +

1

2η
‖δ‖22

However, why are we using an `2 norm here? As we saw in the previous lecture it is sometimes
possible to capture the geometry of the problem in a much better way by replacing this regu-
larization term by a different norm of δ. However, if we are to try to generalize the subgradient
descent analysis for general norms, there is a very serious problem: The cosine law that is crucially
used in the proof is only true for the `2 norm!

To overcome this barrier, we think even more generally and don’t even require the regular-
ization term to come from a norm. This motivates the definition of a generalization of the `22
distance, given in the following section.

2.3. Bregman Divergence. A Bregman Divergence is a (not necessarily symmetric) distance
function D : X2 → R+, determined by a convex function Φ : X → R (called a mirror map) as

D(y,x) = Φ(y)− Φ(x)−∇Φ(x)T (y − x)

It is essentially the error of the linear approximation of Φ at x, evaluated at y. In particular, if
we pick Φ(x) = 1

2‖x‖
2
2 this sets D(y,x) = 1

2‖y − x‖
2
2.

Note now that

D(c, a)−D(c, b) =Φ(c)− Φ(a)−∇Φ(a)T (c− a)− Φ(c) + Φ(b) +∇Φ(b)T (c− b)
=Φ(b)− Φ(a)−∇Φ(a)T (b− a) + (∇Φ(b)−∇Φ(a))T (c− b)
=D(b, a) + (∇Φ(b)−∇Φ(a))T (c− b)

which already looks quite similar to what we needed for the subgradient descent analysis to work.

2.4. Mirror Descent. Motivated by the above, we define the step of our generalized algorithm
to be

min
xt+1
∇f(xt)T (xt+1 − xt) +

1

η
D(xt+1,xt)

where D is the Bregman Divergence defined by the mirror map Φ. By taking optimality conditions
to find the optimal step, we get that

0 = ∇f(xt) +
1

η
∇xt+1

[
D(xt+1,xt)

]
= ∇f(xt) +

1

η
(∇Φ(xt+1)−∇Φ(xt))



4 ONLINE LEARNING AND MIRROR DESCENT

therefore it should be true that

∇Φ(xt+1) = ∇Φ(xt)− η∇f(xt)

This looks a lot like a gradient descent step, only that it is applied on a special function of the
iterates xt instead of the iterates themselves. In order to get an actual iteration, we make sure
that the map ∇Φ is invertible, its inverse being ∇Φ∗ (Here Φ∗ is called the Fenchel dual of Φ,
but we will not go more into that). One condition to ensure we can apply the inverse is that its
domain is Rm, or in other words that ∇Φ is onto Rm.

Now we can conclude with our step, which is

xt+1 = ∇Φ∗
(
∇Φ(xt)− η∇f(xt)

)
Let’s also pick x0 = argmin

x
Φ(x). In our analysis we will also need the property that the mirror

map is strongly convex and has bounded values, and that f is Lipschitz. Therefore we assume
that Φ is `-strongly convex with respect to some norm ‖ · ‖, as well as that f is G-Lipschitz with
respect to that norm and that sup

x
Φ(x) − Φ(x0) ≤ D2. Note that we are ignoring here the fact

that f might be defined in a restricted domain X, in which case we would need to project (using
the distance defined by D) back to X. This is just for ease of presentation. The property that
lets us deal with this in the analysis is

D(c, a) ≥ D(c, b) +D(b, a)

which is a generalization of the Pythagorean theorem.

2.5. Analysis of Mirror Descent. As we menioned before, the analysis of Mirror Descent is in
the lines of Subgradient Descent, with the potential being D(x∗,xt). In particular, we know that

f(xt)− f(x∗) ≤ ∇f(xt)T (xt − x∗) =
1

η
(∇Φ(xt)−∇Φ(xt+1))T (xt − x∗)

and that

D(x∗,xt)−D(x∗,xt+1)

=D(xt+1,xt) + (∇Φ(xt+1)−∇Φ(xt))T (x∗ − xt+1)

=D(xt+1,xt) + (∇Φ(xt)−∇Φ(xt+1))T (xt − x∗) + (∇Φ(xt)−∇Φ(xt+1))T (xt+1 − xt)
≥−D(xt,xt+1) + η(f(xt)− f(x∗))

Therefore ∑
t

(f(xt)− f(x∗)) ≤ 1

η
(D(x∗,x0)−D(x∗,xT ) +

∑
t

D(xt,xt+1))

To bound D(xt,xt+1) we will use the strong convexity and Lipschitz assumptions as follows

D(xt,xt+1) =Φ(xt)− Φ(xt+1)−∇Φ(xt+1)T (xt − xt+1)

=−D(xt+1,xt) + (∇Φ(xt+1)−∇Φ(xt))T (xt+1 − xt)

≤− `

2
‖xt+1 − xt‖2 + ηG‖xt+1 − xt‖

≤η
2G2

2`



ONLINE LEARNING AND MIRROR DESCENT 5

where the last inequality comes from the fact that −ax2 + bx ≤ b2

4a for a > 0. Putting everything
together, we have

f(x̄)− f(x∗) ≤ 1

T

∑
t

(
f(xt)− f(x∗)

)
≤ 1

ηT
(D(x∗,x0)−D(x∗,xT )) +

ηG2

2`

≤D
2

ηT
+
ηG2

2`

≤ DG√
2`T

for η = D
√
2`

G
√
T

Therefore after T = O
(
D2G2

`ε2

)
iterations we get an ε-approximate solution.

To summarize, to optimize a convex function f that is G-Lipschitz with respect to ‖ · ‖ up to
ε accuracy using a Mirror map that is `-strongly convex with respect to ‖ · ‖ and has radius D,

O
(
D2G2

`ε2

)
iterations suffice. It is easy to see that this recovers the Subgradient descent guarantee.

2.6. Relation to Online Learning. In the analysis of the previous section we essentially showed
that ∑

t

∇f(xt)T (xt − x∗) ≤ DG
√
T√

2`

However, the only property of ∇f(xt) used for this proof was their Lipschitzness. As a matter of
fact, we can replace them with arbitrary vectors gt of bounded norm, i.e. ‖gt‖∗ ≤ G. In this case,
the result becomes

∑
t

(gt)T (xt − x∗) ≤ DG
√
T√

2`

which is essentially a regret bound for online learning with linear loss functions l(x, g) = gTx!

2.7. Common setups.

`2 norm. Here we use Φ(x) = 1
2‖x‖

2
2 which is obviously 1-strongly convex with respect to the `2

norm. This exactly recovers the Subgradient Descent algorithm.

`1 norm. By Pinsker’s inequality, the KL divergence upper bounds half the square of the `1
norm of the difference between two probability distributions. Furthermore, the KL divergence
is generated as a Bregman divergence by the negative entropy mirror map Φ(x) =

∑
i

xi log xi

defined on the unit simplex X = ∆n and so Φ(x) is 1-strongly convex with respect to `1.

D(y,x) =
∑
i

yi log yi −
∑
i

xi log xi −
∑
i

(1 + log xi)(yi − xi) =
∑
i

yi log
yi
xi

We also have [∇Φ(x)]i = 1 + log xi and [∇Φ∗(x)]i = exi−1. Therefore our step will be

xt+1
i = ∇Φ∗(∇Φ(xt)− ηgt) = ∇Φ∗(~1 + log xt − ηgt) = xte−ηg

t

but this is exactly the Multiplicative Weights Update method! In fact, if ‖gt‖∞ ≤ 1, as is the

case in the Learning from experts problem we studied, the guarantee we get is O(DG
√
T√
`

) with

D2 = log n, G2 = 1, ` = 1 and so we get a regret of O(
√
T log n), which is exactly the right bound.

Note: As we said before, we have ignored the step of projecting onto the feasible set. Here, this is
the simplex ∆n and we are performing a Bregman projection with the KL Divergence. It is easy



6 ONLINE LEARNING AND MIRROR DESCENT

to see that this exactly corresponds to normalizing the entries of the vector so that their sum is
1. Therefore the projection step in this setup is quite simple.


	1. Online Learning
	1.1. Learning from experts

	2. Mirror Descent
	2.1. Subgradient Descent
	2.2. General norms
	2.3. Bregman Divergence
	2.4. Mirror Descent
	2.5. Analysis of Mirror Descent
	2.6. Relation to Online Learning
	2.7. Common setups


