
Algorithms for Linear Programming

Optimization and Machine Learning Seminar, NTUA December 2018

These notes are intended as reference notes for participants of the Optimization and Machine
Learning Seminar in NTUA. Thus, they are in no way complete or free of errors. Please exercise
critical thinking and don’t take anything for granted.

1. Introduction

Linear Programming (LP) is one of the most widely used primitives that is prevalent both
in theory and in practice. Given linear constraints as well as a linear objective, the goal is to
find a solution that optimizes the objective while meeting the constraints. The constraints can be
inequalities or equalities, but it can be shown that any LP can be brought in the following form:

min
x

dTx

Bx ≥ c

where x, d ∈ Rn, c ∈ Rm, and B ∈ Rm×n.

In this lecture we will be looking for “exact” algorithms for solving LPs, in the sense that the
error dependence will be O(log 1

ε) as opposed to O(poly(1
ε)). For this reason, we are departing

from the gradient descent analyses in the previous lectures and look for algorithms with faster
convergence. Another reason we are departing from that framework is that we would need to
project on the polytope (the linear constraint set), which is a hard problem in general.

2. Cutting plane methods

It is not hard to see that LP solving can be reduced to checking the feasibility of a set of linear
inequalities (i.e. halfspaces). A natural strategy to check the feasibility is the following:

• Start with some polytope P that contains the feasible region F of the LP, if it exists (P
can be, for example, a ball with very large radius).
• We pick a point p in P and check if p is feasible for the LP. If yes, we are done.
• If not, we find a halfspace H that contains F but not p and update P to P ∩H.
• Continue with step 2.

To ensure that our algorithm is making progress, we have to make sure that a large fraction of
the polytope is removed in every iteration. Therefore we have to pick point p in such a way that
no matter which halfspace is removed, the polytope shrinks by a lot. The following theorem due
to Grunbaum exactly answers this problem:

Theorem 2.1. Let K be a convex body, h a hyperplane, and K1,K2 the two disjoint parts of
the body into which h splits it. If h contains the centroid 1

V ol(K)

∫
x∈K

xdx of K, then V ol(K1) ≤

(1− 1
e)V ol(K) and V ol(K2) ≤ (1− 1

e)V ol(K).

In particular, this implies that if we pick the centroid as the point p in our algorithm, then
the volume of the polytope P drops by a constant factor in every iteration. Therefore,

V ol(F) ≤ V ol(P k) ≤ (1− 1

e
)V ol(P k−1) ≤ · · · ≤ (1− 1

e
)kV ol(P 0)

1

2 ALGORITHMS FOR LINEAR PROGRAMMING

and if we have that V ol(P 0) ≤ Rn and V ol(F) ≥ rn, where n is the dimension of the space, we
get convergence after O(n log R

r) iterations.

However, there is an issue here: We don’t know how to efficiently maintain the centroid! This
means that this algorithm isn’t efficient. There are, however, similar algorithms that actually
manage instead of keeping the centroid keep some approximate centroid that is easier to compute.
For more information see [LSW15].

2.1. Ellipsoid method. The Ellipsoid method [Kha79] essentially instead of maintaining a whole
polytope P , maintains an ellipsoid E that shrinks after every iteration. Specifically, we modify
the algorithm as follows:

• Start with some ellipsoid E that contains the feasible region F of the LP, if it exists (E
can be, for example, a ball with very large radius).

• We pick a point p in E and check if p is feasible for the LP. If yes, we are done.
• If not, we find a halfspace H that contains F but not p and update E to the smallest-

volume ellipsoid that contains E ∩H.
• Continue with step 2.

As a matter of fact, we can guarantee that the volume of the ellipsoid drops by a factor of 1− 1
2n

in every iteration, so it drops by a constant factor every O(n) iterations. Therefore the number of
iterations is O(n2 log R

r). Furthermore, each iteration can be computed efficiently (in O(n2) time)
as it is essentially a rank-1 update to the matrix defining the ellipsoid. The point p will still be
the centroid, but this is just the center of the ellipsoid and so is trivial to maintain.

2.2. Solving exponential-sized LPs with cutting plane methods. A really interesting
property of cutting plane methods is that they don’t require an explicit description of all the
constraints. The only thing they need is a separating oracle, i.e. given an infeasible point p to
be able to find efficiently a constraint that is violated by p. As a matter of fact, it turns out
that even though the actual polytope might have an exponential number of constraints, cutting
planes methods might be able to solve it in polynomial time! One interesting example is the
matching polytope: Even though it has been proven that all LP formulations of this problem
have exponential size, it can still be optimized using cutting plane methods.

3. Interior Point Methods

Interior Point Methods (IPMs) pick an approach that is fundamentally different from that
of Cutting planes methods. Instead of looking for any feasible point, we are using a different
formulation in which it is easy to find a feasible point, but the hard part is finding one that
optimizes the objective. In fact, IPMs always maintain a feasible point and keep improving its
objective value, until it is close to the optimal value.

More specifically, consider the formulation

min
x

dTx

Bx ≥ c

As we discussed before, an important issue for optimization algorithms here is that projecting
onto the constraint set might be hard. The way IPMs deal with this issue is to turn this into an
unconstrained minimization problem by incoroprating the constraints into the objective. More
specifically, let Φ(x) be a barrier function, i.e. a function defined in the interior of the polytope
P , such that lim

x→∂P
Φ(x) =∞. In words, this function blows up near the boundary of the polytope.

We will modify the objective to contain this term, along with some tradeoff parameter µ > 0:

ALGORITHMS FOR LINEAR PROGRAMMING 3

fµ(x) = min
x

dTx+ µΦ(x)

and we will prove that for small enough µ (depending on the desired bound on the error ε), the
minimizer of this objective will actually be an approximate minimizer of the LP. Our specific
choice of barrier function will be the log barrier, i.e.

Φ(x) = −
m∑
i=1

log(Bx− c)i

which we will also sometimes write as

Φ(x) = −
m∑
i=1

log si

where si = (Bx − c)i is the slack of the i-th constraint in the current solution x. It is easy to
see that as some constraint i becomes tighter, si → 0, and so Φ(x) → ∞. Therefore the barrier
essentially allows us to make sure that we aren’t too close to the boundary so that we don’t
violate any constraints.

Let’s compute the gradient and Hessian of fµ, where we denote S = diag(s):

∇fµ(x) = d− µBTS−1~1

∇2fµ(x) = µBTS−2B

As it turns out, even though we don’t know of any way of directly minimizing fµ(x) for a
given µ, given the optimal solution for some µ, we can find the optimal solution for some smaller
µ′ fast. This motivates the following section.

3.1. Central path. Let x∗ be the optimal solution of the LP (and for convenience let it be
unique) and

xµ = argmin
x

fµ(x)

sµ = Bxµ − c

As we already mentioned, lim
µ→0

xµ = x∗. The curve traced by xµ for µ > 0 is called the central path

and it is a path connecting some kind of “center” of the polytope with the actual optimum. Our
goal will be to follow this central path closely until we reach close enough to x∗. The following
lemma bounds how small µ has to be.

Lemma 3.1. dTxµ ≤ dTx∗ + µm

Proof. Since xµ minimizes fµ, we have 0 = ∇fµ(xµ) = d− µBT (Sµ)−1~1. Therefore

dTxµ − dTx∗ = µ~1T (Sµ)−1B(xµ − x∗) = µ~1T (Sµ)−1(sµ − s∗) = µ
∑
i

sµi − s∗i
sµi

≤ µm

�

The above lemma implies that computing xε/m is enough to guarantee ε accuracy.

4 ALGORITHMS FOR LINEAR PROGRAMMING

3.2. Newton’s method. One question that remains is, given xµ, how to quickly compute xµ
′

for some µ′ < µ. To this end, we will use Newton’s method, which we introduce in this section.
Note that Newton’s method is a general algorithm and its use is broader than in the context of
IPMs.

Remember that we basically derived the gradient descent step by looking at the Taylor ex-
pansion of our function:

f(x+ δ) = f(x) +∇f(x)T δ +
1

2
δT∇2f(x)δ +O(‖δ‖32)

where we basically replaced the quadratic term by ‖δ‖22 and ignored the higher-order terms.
However, the following question arises: Why not keep the quadratic term and take it into account
when optimizing, to get a “smarter” step? In fact, we get the following minimization problem:

min
δ
∇f(x)T δ +

1

2
δT∇2f(x)δ

which, by taking a first-order optimality condition, gives

∇f(x) +∇2f(x)δ = 0⇔ δ = −[∇2f(x)]−1∇f(x)

this is exactly one step of Newton’s method, i.e.

xt+1 = xt − [∇2f(x)]−1∇f(x)

In general, the guarantees of Newton’s method are of similar nature to the gradient descent
guarantees we discussed in the last lectures. However, for an interesting class of functions called
self-concordant, Newton’s method has the interesting property that if it is already relatively close
to the optimum, convergence is extremely fast.

Before attempting to analyze it we need to set up some appropriate definitions in order to
provide us with the quantities that make sense to keep track of:

Definition 3.2. Given a function f : Rn → Rn, the local norm of u ∈ Rn at x is defined as

‖u‖x = ‖u‖∇2f(x) =
√
uT [∇2f(x)]u

and the dual local norm of v ∈ Rn at x is defined as

‖v‖∗x = ‖v‖[∇2f(x)]−1 =

√
vT [∇2f(x)]

−1
v

Definition 3.3. f : Rn → Rn is called self-concordant if for every 1-dimensional restriction
g : R→ R of f ,

|g′′′(x)| ≤ 2g′′(x)3/2

This implies the following useful property for the Hessian of f

∇f(x)

(
1

1 + ‖∇f(x)‖∗x

)2

� ∇2f(x+ δ) � ∇f(x)

(
1

1− ‖∇f(x)‖∗x

)2

for any δ ∈ Rn.

The potential we will keep track of for Newton’s method will be ‖∇f(x)‖∗x, i.e. the dual local
norm of the gradient. In fact, we will show the following:

Lemma 3.4. If f is self-concordant and ‖∇f(x0)‖∗x0 ≤ 1
10 , Newton’s method converges to an

ε-approximate optimum in O(log log 1
ε) iterations.

ALGORITHMS FOR LINEAR PROGRAMMING 5

Proof. Consider a Newton step x′ = x− [∇2f(x)]−1∇f(x). Let’s denote H = ∇2f(x) and H ′ =
∇2f(x′). From the self-concordance property, we have that 1

2H � H ′ � 2H. Now, the mean

value theorem implies that ∇f(x′)−∇f(x) = H̄(x′ − x), and together with the self-concordance
property

H

(
1

1 + ‖∇f(x)‖∗x

)2

� H̄ � H
(

1

1− ‖∇f(x)‖∗x

)2

which, by simplifying because ‖∇f(x)‖∗x ≤ 1
10 implies

H (1− 3‖∇f(x)‖∗x) � H̄ � H (1 + 3‖∇f(x)‖∗x)

So now

‖∇f(x′)‖∗x′ ≤2‖∇f(x′)‖∗x
=2‖∇f(x) + H̄(x′ − x)‖H−1

=2‖(I − H̄H−1)∇f(x)‖H−1

=2‖(I −H−1/2H̄H−1/2)H−1/2∇f(x)‖2
≤2‖I −H−1/2H̄H−1/2‖2→2‖H−1/2∇f(x)‖2
≤2‖I −H−1/2H̄H−1/2‖2→2‖∇f(x)‖∗x

where ‖A‖2→2 = max
u∈Rn

‖Au‖2
‖u‖2 , or just the maximum eigenvalue of A. From the relation between H̄

and H that comes from self-concordance we get

−3‖∇f(x)‖∗x � I −H−1/2H̄H−1/2 � 3‖∇f(x)‖∗x
and so

‖I −H−1/2H̄H−1/2‖2→2 ≤ 3‖∇f(x)‖∗x
Putting everything together,

‖∇f(x′)‖∗x′ ≤ 6 (‖∇f(x)‖∗x)
2

If we denote λt = ‖∇f(xt)‖∗xt , we have

λk ≤ 6λ2k−1 ≤ · · · ≤ 62
k−1λ2

k

0

and so for k = Θ(log log 1
ε) we get λk ≤ ε. �

3.3. IPM analysis. First of all, our function fµ(x) = dTx −
∑
i

log si is self-concordant. As we

mentioned before, we will use Newton’s method to find xµ
′

given xµ. Let µ′ = µ(1− η). To find
out how large η can be, we compute

‖∇fµ′(xµ)‖∗xµ = ‖c− µ′BT (Sµ)−1~1‖∗xµ
= ‖c− µBT (Sµ)−1~1 + δBT (Sµ)−1~1‖∗xµ
= ‖δBT (Sµ)−1~1‖∗xµ

= δ

√
~1T (Sµ)−1B(BT (Sµ)−2B)−1BT (Sµ)−1~1

≤ δ
√
~1T~1

= δ
√
m

≤ 1

10

6 ALGORITHMS FOR LINEAR PROGRAMMING

for δ ≤ 1
10m . The second to last inequality comes from the fact that

(Sµ)−1B(BT (Sµ)−2B)−1BT (Sµ)−1

is an orthogonal projection matrix and thus contracts the `2 norm.

Therefore we can take µ′ = µ(1 − 1
10
√
m

) and since we will be decreasing µ by a factor

of poly
(
m
ε

)
over the whole course of the algorithm, the total number of iterations will be

O(
√
m log m

ε). This algorithm was devised by Renegar in 1988 [Ren88].

References

[Kha79] Leonid G Khachiyan. A polynomial algorithm in linear programming. In Doklady Academii Nauk SSSR,
volume 244, pages 1093–1096, 1979.

[LSW15] Yin Tat Lee, Aaron Sidford, and Sam Chiu-wai Wong. A faster cutting plane method and its implications

for combinatorial and convex optimization. In Foundations of Computer Science (FOCS), 2015 IEEE
56th Annual Symposium on, pages 1049–1065. IEEE, 2015.

[Ren88] James Renegar. A polynomial-time algorithm, based on newton’s method, for linear programming. Math-
ematical Programming, 40(1-3):59–93, 1988.

	1. Introduction
	2. Cutting plane methods
	2.1. Ellipsoid method
	2.2. Solving exponential-sized LPs with cutting plane methods

	3. Interior Point Methods
	3.1. Central path
	3.2. Newton's method
	3.3. IPM analysis

	References

