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Leveraging predictions in a status of uncertainty
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online

algorithm

In the standard model: No assumptions about the future input items

Competitive analysis: main analysis technique since the mid 80s [Sleator and Tarjan 85]
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How to enhance the standard model of

online computation so as to deal with predictions
concerning the input!?
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algorithm

Dg advice p(0)

= |f p(0) = empty => Standard online computation

= |f ¢(0) encodes the optimal decisions => Optimal offline performance

General question: what lies between these two extremes ?
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Advice complexity of online problems

Definition  [Dobrev et al. 2009, Bockenhauer et al. 2009, Emek et al. 2011]

An online problem P is c-competitive with advice of size f(n) if there is a c-
competitive algorithm for P with advice tape of size at most f(n), where n is the

length of the request sequence o

Applications in many problems: paging, list update, makespan scheduling, k-server, bin

packing, graph colouring, Steiner trees and many, many others

[Komm: An introduction to online computation, Springer 2016 ]

[Boyar et al. Online computation with advice: A survey, ACM Computing Surveys, 2017]



Advice complexity model: mostly theoretical

m Focus on size of the encoded advice

= Advice oracle can be overly powerful

= Advice is guaranteed to be error-free and trustworthy



Advice in the real world

< advice

/ed ' vais/

noun

1. guidance or recommendations offered with regard to prudent future action.
“my advice is to see your doctor”
synonyms: guidance, advising, counselling, counsel, help, direction, instruction, information,
enlightenment; More

2. a formal notice of a financial transaction.
“remittance advices"
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Second approach: machine-learned predictions

A prediction associated with the input which is inherently erroneous

The prediction has error  (unknown to the algorithm)

Robustness : competitive ratio
with adversarial error

O @ ® g

Consistency : competitive ratio competitive ratio

with no error with error 77

Mostly upper bounds on the
competitive ratio with error

“Smooth” degradation with error

objectives

Experimental validation
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Related works

Lykouris and Vassilvitskii, ICML 2018] : Introduced consistency, robustness in paging

Purohit, Svitkina, Kumar, NeurlPS 2018] : Other online problems

Many other recent works...

[Mitzenmacher and Vassilvitskii 2020] : survey of (some) recent results

Broader direction: Analysis of algorithms beyond the worst case
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m Searcher aims to minimize the competitive ratio of its strategy S

distance traversed by the searcher using §
cr(S) = sup
H d(H)

= Optimal deterministic competitive ratio =9 using x; = D! [Beck and Newman 70]

m Many studies of extensions [Alpern and Gal, The Theory of Search Games and
Rendevous, 2003]
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Hints in online search

Hint /: some information that is given to the searcher = If hint is trusted, then it is

The search strategy S(/) is now a function of the hint guaranteed to be correct

a If hint is untrusted, then it is
generated adversarially

Consistency: c.r. if hint is correct
Competitiveness of S(h) = (¢s.4,7s.n)

Robustness : c.r. if hint is adversarial
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= A strategy that always trusts the hint is (1,00) competitive

= The doubling strategy that ignores the hint is (9,9) competitive

g -

Pareto e e

efficiency



Types of hints

1 The hint is the exact position of the target
e O
H
2 The hint is the direction of the search (left or right)
O
*
3 The hint is a k-bit string

01101...1



|. The hint is the exact position of the target
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Results for hint as position

b+ 1

r

Upper bound: The previous strategy is ( , r> -competitive

Lower bound: No other strategy is better (Pareto optimality)

Helpful lemma. For every r-robust strategy it holds that

b
xX; < <b,, + i+r1 ) X;_q, for every i



Summary of results for the other settings

Hint=
direction

Hint=
k-bit string

Upper bounds

Lower bounds

Pareto-optimal strategies

(1 + 4\/5,9) No better than (5,9)
(1+2 r r) for
k=1 Upper bound for b, — ’
general r restricted strategies
k>1 Upper bound for c>3
general r

Techniques

Functional
theorems
[Schuierer 2001]

and [Gal 1974]

Information-
theoretic
arguments

Adversary-
algorithm games

Relate the hint to
multi-searcher
strategies




Part 2 : Contract scheduling with predictions
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Motivation

Design of systems that are robust to interruptions

Integral requirement of many real-time and anytime applications

3 ‘.Q;E;’@J\c.'c ) 2 umn
O &) @)@ (@) (=) @)(e) I
’@'@@G‘:«.’ej(ﬁ&)‘ 47
A A )
©)@E(E)(IEE ’

) Fe) Feife)(e) (o) (@) (e!

() ) :1'0"0-’0 (o) fo )V A l.

o~ adal




Anytime computation: contract and interruptible algorithms




Anytime computation: contract and interruptible algorithms

Two different types of anytime algorithms [Russell and Zilberstein 1991]



Anytime computation: contract and interruptible algorithms

Two different types of anytime algorithms [Russell and Zilberstein 1991]

Contract

algorithms

Execution time T given as input

If allowed to run up to T: output is correct

If interrupted prior to T, output
may be meaningless



Anytime computation: contract and interruptible algorithms

Two different types of anytime algorithms [Russell and Zilberstein 1991]

Contract Interruptible

algorithms algorithms

Return progressively better
output as function of time

Execution time T given as input

If allowed to run up to T: output is correct
If interrupted they output

If interrupted prior to T, output ‘meaningful” results

may be meaningless



Anytime computation: contract and interruptible algorithms

Two different types of anytime algorithms [Russell and Zilberstein 1991]

Contract Interruptible

algorithms algorithms

Return progressively better
output as function of time

Execution time T given as input

If allowed to run up to T: output is correct
If interrupted they output

If interrupted prior to T, output ‘meaningful” results

may be meaningless



From contract algorithms to interruptible algorithms




From contract algorithms to interruptible algorithms

ldea: Schedule executions of the contract algorithm with increasing running times



From contract algorithms to interruptible algorithms

ldea: Schedule executions of the contract algorithm with increasing running times




From contract algorithms to interruptible algorithms

ldea: Schedule executions of the contract algorithm with increasing running times




From contract algorithms to interruptible algorithms

ldea: Schedule executions of the contract algorithm with increasing running times




From contract algorithms to interruptible algorithms

ldea: Schedule executions of the contract algorithm with increasing running times




From contract algorithms to interruptible algorithms

ldea: Schedule executions of the contract algorithm with increasing running times




From contract algorithms to interruptible algorithms

ldea: Schedule executions of the contract algorithm with increasing running times




From contract algorithms to interruptible algorithms

ldea: Schedule executions of the contract algorithm with increasing running times




From contract algorithms to interruptible algorithms

ldea: Schedule executions of the contract algorithm with increasing running times




From contract algorithms to interruptible algorithms

ldea: Schedule executions of the contract algorithm with increasing running times

L
acceleration ratio = sup
¢ largest contract completed by ¢



From contract algorithms to interruptible algorithms

ldea: Schedule executions of the contract algorithm with increasing running times

t
acceleration ratio = su — A(optimal
tp largest contract completed by ¢ (optimal)

[Russell and Zilberstein 1991]



Related work on contract scheduling

Setting

1 instance

n instances
1 instance, m processors
n instances, m processors
n instances, m processors

Soft interruptions
Alternative measures

Connections to searching

End guarantees

Reference
Russell and Zilberstein 1991
Zillberstei, Charpillet and Chassaing 2003
Bernstein, Perkins, Finkelstein and Zilberstein 2002
Bernstein Finkelstein and Zilberstein 2003
Lopez-Ortiz, A, and Hamel 2014
A. and Lopez-Ortiz 2017
A. and Lopez-Ortiz 2009
Bernstein Finkelstein and Zilberstein 2003 and A. 2015

A. and Jin, 2019
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Our setting: Contract scheduling with predictions

1=

Information related
to interruption

prediction

\_

( = Prediction is the interruption

actual interruption

(1= <T<7(1+7n)

n € [0,1] : fraction of the erroneous bits

~

error € [0,1]

= Prediction is the answer to n binary queries

)

= H :upper bound on 7. Distinction between H-aware and H-oblivious schedules
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Start with an ideal setting: the prediction has no error (7 = 0)

This is similar to searching on the line with hint being the position of the target :

we will use the schedule (b,f)i

For desired robustness 7,
this schedule has consistency

_ o=
Pareto optimal [ \/; aid

Eg,forr =4,¢c=2
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Prediction is the interruption time

The general setting: The prediction has error 7
prediction 7

I |

The schedule with lengths b <—>

(1 — p), for chosen p € (0,1)

= For H-oblivious schedules, this is near-optimal

= For H-aware schedules, choosing p = H is near-optimal



Experimental results for r=4, H=0.1

Baseline Schedule == p=0.05 == p=0.1(H-aware) p=02 == p=0.3
4.0
3.5
O
*é 3.0
c R T e T Co s e
O
©
| .
% 2.5
O
&)
© WWM*WWM
2.0
1.5

2.00E+5 4.00E+5 6.00E+5 8.00E+5 1.00E+6

interruption time
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Start with an ideal setting: the prediction has no error (17 = 0)

Idea: With 7 bits, we can choose the best among a collection of 2" schedules

exponential schedules,
| scaled by different factors g

271

= Tradeoff between robustness 7 and consistency c¢ in terms of n
1
® E.g., forr = 4, we obtain c = 2727

= This is Pareto-optimal for r = 4
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Prediction comes from n binary queries

The general setting: the prediction has error 7

Outline of the approach

é )
Use the n queries to choose the best among n possible schedules
Use some ““buffer” p € (0,1) on how much error we can tolerate
The i-th query is of the form: “Is the best schedule among the 1 first ones?”

\_ W,

= Tradeoff between robustness r and consistency c, in terms of n and p

® E.g., forr = 4, we obtain ¢ =

3 1+5+2p
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Some details in choosing the schedule

A A ¢1
2

3
Voo
v n

index of best schedule : [

index of chosen schedule: N+ 1—p-n

N: number of 'no’ responses

p: tolerance (buffer)
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Queries can be made “natural”

= In the previous discussion, queries are not very intuitive....

m ... but we can interpret each query as a partition of the timeline

“Does the interruption occur in the red partition on in the partition?”



Experimental results for r=4, n=100, H=0.1

baseline schedule == p=0.05 == p=0.1(H-aware) p=02 == p=0.3
4.0

3.5

3.0

acceleration ratio

1.5
200000 400000 600000 800000 1000000

interruption time
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Problem description

Pack a sequence of items (each with its own weight) into the minimum number of

m B

bins of a given capacity

Online setting: Minimize the (asymptotic) competitive ratio

Many applications (from inventory management to cloud computing)

e.g., [Cohen et al : Overcommitment in Cloud Services: Bin Packing with Chance

Constraints, Management Science 2019]
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Some known results

Best known upper bound : 1.57829 [Balogh et al. 2018]

Best known lower bound : 1.54037 [Balogh, Békési and Galambos 2012]

FIRST-FIT, BEST-FIT have competitive ratio 1.7. [Johnson et al. 1974]

In practice, FIRST-FIT and BEST-FIT perform very well

In practice, many competitively efficient algorithms do not perform as well as FIRST-FIT
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Bin packing with predictions

We assume a discrete model: The bin capacity is a constant k, and each item

has integral size in [1,k]

Prediction: Frequencies at which the items are requested in the sequence

Formally: for each size x € [1,k], the frequency f, , of x in the sequence ¢

Is the number of items of size x in o divided by the size of ¢

Prediction error: L, distance between the actual and the predicted frequencies
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Profile Packing

Fix a (large) constant M. We call the multiset that consists of [f, - M | items of size x

the profile of o

We can compute the optimal packing of this profile set in O(1) time

Example: M=12,k = 3,f, =0.7,/, = 0.2, f; = 0.1

Profile consists of 9 items of size 1, 3 items of size 2 and 2 items of size 3

Profile Packing: A natural online algorithm based on this concept
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Results

Theorem: Profile packing has competitive ratio arbitrarily close to 1 + 2nk

(excellent consistency, bad robustness)

We propose an algorithm that offers a much better balance, which we call HYBRID(A),

where A € [0,1] is a parameter chosen by the user

Profile packing

FIRST-FIT ;—

others using Profile Packing -

=4

Main idea: Some items are served using FIRST-FIT,

Theorem: HYBRID(A) has competitive ratio arbitrarily close to 1.7 + A(2nk — 0.7)



Experimental evaluation (Weibull distribution)

== == | 2 | ower Bound (Opt) == First Fit Best Fit € Hybrid (Lambda = 0.25)
® Hybrid (Lambda = 0.5) A Hybrid (Lambda =0.75) @ Profile Packing (Lambda =1)
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Future work

= Bridge the gaps between the upper and the lower bounds for online search and

contract scheduling (the upper bounds are likely tight)

a Challenge: information-theoretic lower bounds in the presence of errors

= Analysis beyond the competitive ratio (e.g. search optimization problems)

m Learning aspects of predictions
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m Likely to have PhD opening on this topic (or more broadly on online computation) in
2021

m Potential postdoc opening for 2022
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m Likely to have PhD opening on this topic (or more broadly on online computation) in
2021

m Potential postdoc opening for 2022

Thank you!



