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Abstract—The major operational problem in one-way vehicle
sharing systems is the vehicle stock imbalance problem. In this
paper, we address this problem by proposing a new approach for
dynamically allocating vehicles to users based on “incentiviza-
tion” schemes which use reservations to coordinate supply-and-
demand mismatches and price incentives for rewarding users, if
they accept to pick up their vehicle from an oversupplied station
and/or to drop off it to an under-supplied station. The system
incentivizes users based on the priorities of vehicle relocations
from station to station, taking into account the fluctuating
demand for vehicles and parking places at different stations
over time. We present two different schemes for incentivizing
users to act in favour of the system. Both schemes consider
budget constraints and are truthful and budget-feasible. We
extensively evaluated our approach through simulations and
observed significant improvements in the number completed trips
and system revenue.

I. INTRODUCTION

Vehicle sharing is a model of short-term vehicle rental,
particularly attractive to citizens who make only occasional use
of a vehicle, enabling the benefits of private vehicles without
the costs and responsibilities of ownership [12]. Replacing
private automobiles with shared ones directly reduces demand
for parking spaces and decreases traffic congestion at peak
hours, thereby supporting the vision of sustainable transporta-
tion. Vehicle sharing first appeared in Europe in 1940’s [15],
[16]. Vehicle Sharing Systems (VSSs) are commonly classified
into two-way and one-way systems. Two-way systems require
users to pick up the vehicles from and return the vehicles
to the same station while one-way systems permit users to
return the vehicles to a different station. The major operational
problem in one-way systems which does not appear in two-
way systems, is the vehicle stock imbalance taking place when
a large number of vehicles is gathered to certain stations of
the system while high demand stations remain without the
appropriate number of vehicles to satisfy user requests.

Significant research work has been conducted from an
optimization perspective to devise methods to overcome the

vehicle stock imbalance problem in VSSs [7]. A very common
approach proposed in the literature to address the problem is
vehicle relocation, i.e., to employ drivers (or staffed trucks
in the case of bicycles) to relocate vehicles to high demand
stations. The proposed vehicle relocation approaches are sep-
arated into static and dynamic ones. In the static approaches,
repositioning is taking place when the system is not operating
(e.g. during the night) [14]. Although such an off-line approach
gives the possibility of employing optimal low cost routing
methods for transferring vehicles among stations, it cannot
react to unexpected variations in the demand pattern arising
during the operation of the system. In the dynamic approaches,
relocation is taking place while the system is in full operation
and therefore, reacts on-line to unforeseen changes in the
demand pattern [13].

Vehicle relocation methods address successfully the vehi-
cle stock imbalance problem but increase significantly the
operational cost of the VSSs as they have to account for
the relocation cost. Note that the relocation cost consists of
the vehicle cost related to the distance driven to relocate
the vehicles and the labour cost of the drivers used to re-
locate the vehicles. Three important alternative approaches
to address vehicle stock imbalance have been proposed in
the literature. The first approach is a user-based relocation
strategy which employs price incentives for grouping users
(trip-joining strategy) if they are travelling from a station
with a shortage of vehicles or grouping users (trip-splitting
strategy) if they are travelling from a station with a surplus of
vehicles [1]. The second approach is based on trip selection,
i.e., vehicles are allocated to satisfy user requests only if this
is advantageous to the system from the profit point of view
taking into consideration the vehicle relocation costs [3], [4].

The third approach employs pricing policies to encourage
users to pick up their vehicle from an oversupplied station
and/or to drop off it to an under-supplied station. Regarding
this approach different methods have been proposed. Specifi-



cally, in [5] a mean-field technique is used to analyse the effect
of simple incentive schemes on the service level provided by
the sharing system. It is shown that incentives to return bikes to
the least loaded station among two, may significantly improve
the system’s performance even if only a small proportion of
the users accept to do so. In [18] the VSS is modelled as
a closed queuing network with infinite buffer capacity and
Markovian demands. The goal is to maximize utilization by
setting prices and incentives for each possible trip. In [10]
a MINLP model is proposed that considers demand as a
function of price and searches for the prices that maximize
the profit. In [13] a mechanism is given to compute dynamic
price incentives encouraging users to choose another drop-
off station, thereby reducing the expected cost of vehicle
relocation using dedicated staff. The mechanism is based
on a predictive model of the expected near-future evolution
of the system state. In [17] the authors design a dynamic
pricing mechanism using the approach of regret minimization
in online learning.

In this paper we propose a new approach for dynamically
allocating vehicles to users based on “incentivization” schemes
which use (i) reservations to coordinate supply-and-demand
mismatches, reduce uncertainty and allow better forecast of the
VSS’s future state, and (ii) price incentives for rewarding users
if they are travelling from a station with a surplus of vehicles
to a station with a shortage of vehicles. Briefly, our approach
proceeds as follows. Upon receiving a set of user requests,
for each request asking to move from a start location to an
end location, the system first determines a set of alternative
trips with different vehicle pick-up station and/or a drop-off
station (the set of feasible trips) than the requested trip. These
are the trips the user is willing to accept, as long as they
participate in the incentivization scheme and according to their
declared tolerances. Then each feasible trip is broken down
into exact vehicle relocations, each consisting of an available
vehicle at the pick-up station, an available parking place at
the drop-off station and the corresponding pick-up and drop-
off times. At this point, there is a set of candidate relocations
V to materialize the set of requests, from which the system
may select the subset which maximizes its payoff.

To accomplish this, we assign a weight (relocation priority)
to each potential relocation to indicate the urgency in perform-
ing it. The relocation priority is a function of the pick-up and
drop-off times and stations, as well as of the exact pair of
available vehicle and available parking place to be used. In
the sequel, we propose a method for computing an optimal
set of trip suggestions that maximizes the profit of the system,
i.e., the number of accepted requests taking into account the
relocation priorities, the fluctuating demand for vehicles over
time, the system budget constraints, and also the strategic
behaviour of the users potentially aiming at maximizing their
profit. We present two effective incentivization schemes to
associate trip suggestions with price incentives aiming at
encouraging users to accept the suggested trips. The first
scheme is not taking any user cost associated with the change
of his route, while the second scheme considers this cost. Both

schemes are truthful and budget-feasible.
Unlike previous related works, our incentivization schemes

examine the user requests not individually but at batches and
assign priorities to the requests by considering occupancies
of pairs of stations instead of individual occupancies of the
pick-up and drop-off stations together with a detailed view of
vehicle distribution over VSS. Thus, our schemes are able to
take informed decisions and hence derive effective user incen-
tives. The rest of the paper is organized as follows. Section
II presents the incentivization schemes for vehicle allocation
and Section III discusses how the relocation priorities are set.
Section IV presents the experimental evaluation results.

II. THE INCENTIVIZATION SCHEMES FOR VEHICLE
ALLOCATION

Let S = {s1, ..., sn} be the set of the stations of the VSS.
We associate each station si ∈ S with the following variables:
• ci: si’s capacity, i.e., the number of parking spaces at si;
• oi(t): si’s anticipated (planned) occupancy at time t; the

value of oi(t) can be computed at a time t′ < t using
the system’s information about the confirmed vehicle
reservations concerning si up to t′;

• wi(t): si’s target (intended) occupancy at time t. It is
mainly computed using historical data for vehicle reserva-
tions over long periods of time that may concern different
hours of a day, different days of the week or different
seasons (see [6], [9], [11] for possible approaches).

In the sequel we shall use the notation, sαi (t), α ∈
{1, ..., oi(t)} to refer to a vehicle available at station si and
time t, and sεi(t), ε ∈ {1, ..., ci − oi(t)} to refer to a free
parking space at station si and time t, for i ∈ {1, ..., n}.

We consider that each user request for vehicle reservation
Ri comprises the following attributes:
• sl(Ri): the exact start trip location;
• el(Ri): the exact end trip location;
• st(Ri): the user start trip time;
• dt(Ri) : the rental time duration (optional);
• icv(Ri): indication of willingness in participating in the

incentivization scheme (optional);
• delay(Ri): the maximum additional time the user is

willing to spent for an alternative trip with respect to
the user’s best trip induced by Ri (optional);

• tol(Ri): the maximum acceptable (tolerable) time to be
spent for the non-vehicle-use part of the user’s trip (i.e.,
the maximum walking time the user may tolerate and/or
the maximum time the user is willing to spent using
public transport) (optional).

Note that the values of the last four attributes are kept at the
user’s profile. A request contains values to these attributes only
when the user wants to differentiate from her profile kept by
the VSS.

A. Handling user requests

Upon receiving a user request Ri, the VSS first determines
a set of alternative trips called the set of feasible trips TRi .



This set is constructed taking into account walking time
and/or multimodal public transportation data for estimating the
elapsed time to reach a vehicle pick-up station from sl(Ri) and
to reach el(Ri) from a vehicle drop-off station. Specifically,
for each Ri the set of reachable vehicle station pairs BRi is
computed which consists of potential pairs of vehicle pick-
up and drop-off stations (sp, sd) ∈ S × S that support the
feasibility of the request.

Fig. 1. Set of reachable stations from sl(Ri); the red circle area is within
walking distance from sl(Ri), while the blue circle areas are reachable using
public transport

Notice that the user’s total trip time τdp (Ri) for materializing
request Ri using a vehicle from station sp to station sd can
be broken down into three parts:
τdp (Ri) = τ

(
sl(Ri)→ sp

)
+ τ
(
sp → sd

)
+ τ
(
sd → el(Ri)

)
,

that is the time τ
(
sl(Ri)→ sp

)
needed to move from sl(Ri)

to station sp, the time τ
(
sp → sd

)
needed to drive from

sp to sd, and finally, the time τ
(
sd → el(Ri)

)
needed to

reach el(Ri) from sd. Therefore, the set of reachable vehicle
station pairs BRi consists of the pairs (sp, sd) which satisfy
the following:
τ
(
sl(Ri)→ sp

)
+ τ
(
sd → el(Ri)

)
≤ tol(Ri)

τdp (Ri) ≤ τd
∗

p∗ (Ri) + delay(Ri),
where p∗ is the index of the station sp∗ which is closer to
sl(Ri) than any other station sx ∈ S, and d∗ is the index
of the station sd∗ which is closer to el(Ri) than any other
station sy ∈ S (see Figure 2). In the sequel, we refer to the
pair (sp∗ , sd∗) as the user’s best pair.

Each Ri corresponds to a set of feasible trips TRi =
{tr(sp, sd, tp, td) | (sp, sd) ∈ BRi}, where each trip
tr(sp, sd, tp, td) ∈ TRi is uniquely characterized by the pair
of stations (sp, sd) between which the vehicle relocation takes
place and the timestamps tp, td when the vehicle is taken from
sp and left at sd respectively. If a user declares unwilling to
participate to the incentivization scheme, then the set BRi
consists only of the user’s best pair (sp∗ , sd∗) and thus, the
request corresponds to only one feasible trip called the user’s
best trip from sp∗ to sd∗ .

B. The vehicle allocation mechanism

Given a set of requests R = {R1, R2, ..., Rk} submitted
to the VSS during a predetermined time window, for each

Ri ∈ R we compute the corresponding set of feasible trips
TRi = {tr(sp, sd, tp, td) | (sp, sd) ∈ BRi}, i = 1, .., k. We
aim at computing an optimal set of trip suggestions M that
maximizes the profit of the system, i.e., the number of accepted
user requests taking into account the priorities of the vehicle
relocations realized by the user requests as well as the budget
the system can afford to spend for rewarding users if they
accept the suggested trips, and the strategic behaviour of the
users potentially aiming at maximizing their profit. .

To formulate the problem, we proceed as follows. For each
Ri ∈ R and feasible trip tr(sp, sd, tp, td) in TRi if sαp (tp)
is a vehicle available at sp at time tp and sεd(td) is an empty
parking place at sd at time td, then φ =

(
Ri, s

α
p (tp), s

ε
d(td)

)
is

considered as a candidate trip suggestion for serving Ri. Then
φ
(
Ri, s

α
p (tp), s

ε
d(td)

)
is assigned a weight, which is equal to

the relocation priority π of the vehicle sαp (tp) to the parking
place sεd(td), calculated as a function of sp, sd, tp, td (see
Section III).
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Fig. 2. The vehicle allocation problem

Now, for each Ri ∈ R, let Ci be the set of all candidate trip
suggestions

(
Ri, s

α
p (tp), s

ε
d(td)

)
each weighted as described

previously. Let also V be the union of the sets Ci over
all Ri ∈ R. Then a solution to our problem is a subset
M of trip suggestions in V which satisfy different requests,
require non-conflicting resources and maximize the sum of the
priorities of the corresponding feasible trips. Specifically, note
that for each Ci only one of the candidate suggestions may
be included in the problem solution as they all correspond
to the same user request Ri. Similarly, although the same
vehicle (or the same parking place) may appear to more than
one candidate suggestion in V , it can be used to satisfy only
one request (see Figure 3). Notice that our problem can be
considered as a WEIGHTED 3-SET PACKING problem on
the set V . By solving it we find a subset M of V consisting
of mutually disjoint triples (i.e., for any two distinct triples(
Ri, s

α
p (tp), s

ε
d(td)

)
,
(
R′i, s

α′

p′ (tp′), s
ε′

d′(td′)
)
∈ M , we have

Ri 6= R′i and sαp (tp) 6= sα
′

p′ (tp′) and sεd(td) 6= sε
′

d′(td′)),
which maximizes the sum of the priorities of the corresponding



feasible trips. The triples in the set M correspond to requests
that can be concurrently served as they require non-conflicting
resources.

In the sequel we employ a heuristic algorithm to solve the
WEIGHTED 3-SET PACKING problem on the set V . The
algorithm considers the intersection graph G = (V,E) of the
set system V containing a node for each triple (candidate
suggestion) in V and an edge between any two nodes that
represent intersecting sets. The weight of each node in G is
set equal to the calculated priority of the corresponding triple
in V . Actually, the WEIGHTED 3-SET PACKING problem
is reduced to the MAXIMUM WEIGHT INDEPENDENT SET
(MWIS) problem on G = (V,E). Notice that G is a 4-
claw free graph, since the sets are of size 31. The Com-
puteTripSuggestions algorithm (Algorithm 1) given below, is a
constant factor approximation algorithm for solving the MWIS
problem in our vertex-weighted 4-claw free graph G. The
algorithm first orders the nodes of V in decreasing order
of their relocation priorities π and then employs a greedy
approach for computing the MWIS of G, i.e., the set M of trip
suggestions that can be simultaneously served by the VSS. In
Algorithm 1, if A,B are subsets of V then N(A,B) = {v ∈
B : ∃u ∈ A such that {v, u} ∈ E or v = u}.

In the sequel, we need to associate each trip suggestion in
M with a price incentive aiming at encouraging users to accept
the suggested trips.

Algorithm 1 ComputeTripSuggestions
Input: Node-weighted 4-claw-free graph G(V,E, π : V � R)
Output: The Set of Trip Suggestions M

1: Order nodes in V in decreasing order of π;
2: M ← ∅;
3: for all φ ∈ V in the order defined above do
4: if φ ∈ V \N(M,V ) then
5: M ←M ∪ {φ}
6: end if
7: end for

C. Incentivizing the users

The design of an effective incentivization mechanism to
decide the rewards that will be given to the users in case that
they accept the system suggested trips (or system-best trips),
requires a model of how the VSS as well as the users react.
As already mentioned, the VSS needs to encourage user-based
vehicle relocations in order to reduce the vehicle relocation
cost by dedicated staff. Thus, it aims at incentivizing user
requests based on the priorities of vehicle relocations from
station to station taking into account the fluctuating demand
for vehicles and parking slots at different stations over time.
On the other hand, the users participating in an incentivization
scheme, place a value on the additional cost/effort and/or

1A d-claw is an induced subgraph of G that consists of an independent
set TC of d nodes called talons, and the centre node that is connected to
all talons; algorithms for solving the maximum independent set problem in
d-claw free graphs (d constant) have constant approximation ratio [2].

time they should spend in order to change their original
and/or destination station (i.e., their user-best trip). Therefore,
the rewards that will be given should counterbalance this
additional cost/time. Also, the incentivization scheme should
take into account the potential strategic behaviour of the users
aiming at maximizing their rewards.

We propose two different schemes for incentivizing users
to act in favour of the VSS. Both schemes consider that there
are budget constraints on how much the system can spend for
incentives. In the first scheme, no user costs are taken into
account. The rewards given to the users (incentives) are com-
puted based on the relocation priorities of the suggested trips
derived by the ComputeTripSuggestions algorithm. The second
scheme employs a utility function associating each candidate
trip suggestion in V with the priority of the corresponding
vehicle relocation, and also considers user defined costs, each
corresponding to the additional time and/or effort the user
spends if he changes his original/destination station. Then, the
set M of the suggested trips and the rewards to the users are
computed based on the utility values and the user costs. Both
schemes are truthful and budget-feasible: they give no reason
to the user to report fake information (for example cost or
start trip location) and respect the system’s desired budget to
be returned. The second scheme is also individually rational,
i.e., no user gets as a reward less than his declared cost.

Scheme I. A priority-based incentivization scheme. The
budget B (i.e. the maximum amount of money to be returned
to the users as incentives) is determined as a fraction of the to-
tal amount of money the system is going to collect from the set
R of submitted requests as follows. Let M = {φ1, ..., φl}, l ≤
|R| be the output of the ComputeTripSuggestions algorithm,
i.e., the set of the trip suggestions that can be simultaneously
served by the VSS. Let R′ = {Ri1 , ..., Ril}, R′ ⊂ R, be
the set of the distinct user requests such that Rij corresponds
to the trip suggestion φj , j ∈ {1, ..., l}. For each Rij ∈ R′

let zj be the cost the user is going to pay if he accepts the
corresponding trip suggestion. This cost is determined by the
VSS. For example, if the VSS’s charging system is based on
distance, zj may be determined by the distance between the
stations of Rij ’s user’s best trip. Then the budget B may be
set equal to A ·

∑
Rij∈R′

zj where A is a positive constant
smaller than 1 defined by the VSS.

To determine the incentive given to each user or in other
words, the fraction aj of the initial cost zj , j ∈ {1, ..., l}, the
user is going to pay, we proceed as follows. We consider a
parameter b < 1 indicating a minimum fraction of the cost
to be paid by each user accepting a trip suggestions in M .
For each φj ∈ M , let πj be the corresponding relocation
priority. Then we introduce a, a decreasing function on the set
of relocation priorities π as follows: a : R+ → [b, 1], a(0) = 1
and a(∞) = b. For example, it could be a(π) = b+(1−b)e−π .
Alternatively, if πmax is the maximum of the priorities, then we
may define a : [0, πmax] → [b, 1], a(πmax) = b and a(0) = 1;
it could be a(π) = 1− (1− b)( π

πmax
), 0 ≤ π ≤ πmax.

Finally, we set the fraction aj equal to a(πj), j = 1, ..., l



and we determine the parameter b, by solving the following
equation for b:

∑
Rij∈R′ ajzj =

∑
Rij∈R′ zj −B.

It is easy to notice that the above incentivization scheme is
budget-feasible, i.e., the total amount of the rewards given to
the users does not exceed the budget B. As far it concerns
the truthfulness of the scheme, note that although the user
reports no cost, he may misreport his private data (i.e., his
start trip location). This may change the set of reachable pairs
and therefore, the set of candidate trip suggestions. It is easy
to prove that by misreporting the start location, the user is
offered either the same trip suggestion or a trip suggestion
from which he derives “no value” because it corresponds to
a pick-up station that is far away from the user’s real start
location. Therefore, the following lemma can be proved.

Lemma 1. The priority-based incentivization scheme is
budget-feasible and truthful.

Scheme II. A user cost and priority-based incentivization
scheme. Given a set of requests R = {R1, R2, ..., Rk}
and the corresponding set system V as defined in Sec-
tion II-B, we associate each candidate trip suggestion φ =(
Ri, s

α
p (tp), s

ε
d(td)

)
in V with a utility uφ corresponding to

the relocation priority of vehicle sαp (tp) to the parking place
sεd(td). Specifically, uφ = D · πφ where D is a constant and
πφ is the relocation priority. We also associate φ with a cost ci
corresponding to the value the user (who requested Ri) places
on the additional cost/effort and/or time he spends in order to
change his pick-up and/or drop-off station. Note that ci is zero
if the user is not participating in the incentivization scheme.

We hereby present an incentivization scheme (Algorithm
ComputeTrips&Rewards) which, given the user costs ci, i =
1, ..., k, the utilities uφ, φ ∈ V , and a budget B to be offered
as rewards to the users by the VSS, decides the set of trip
suggestions (requests that can be served) and the rewards to
the respective users. The rewards are uniform in the sense
that if a request Ri corresponding to a trip suggestion φ =(
Ri, s

α
p (tp), s

ε
d(td)

)
is accepted, then the user is paid a reward

ri = r · uφ , where r is the same for all accepted requests.
The total payment to the users must not exceed the budget B.

The incentivization scheme is inspired by the TM-Uniform
mechanism presented in [8]. It considers the intersection graph
G = (V,E) of the set system V containing a node for each
triple (candidate trip suggestion) φ =

(
Ri, s

α
p (tp), s

ε
d(td)

)
in

V . Each node φ in V is associated with the value rate(φ) =
ci/uφ corresponding to the cost the system should pay per
unit of utility. Then the nodes in V (|V | = K) are sorted
in decreasing order with respect to their rate value, i.e., if
φ1, · · · , φK is the sorted list of the nodes, then for i < j we
have that rate(φj) ≤ rate(φi).

The scheme assumes a permutation σ of the nodes in V
and consists of at most K iterations. It starts with the initial
graph G while at each iteration G is modified. Specifically, at
each iteration i an independent set M on the current graph G
(Algorithm FindIS) as well as the utility u(M) =

∑
φ∈M uφ

of M are computed. Then, if the product rate(φi) · u(M) is

greater than the budget B, the node φi is removed from the
graph and the next iteration starts.

Algorithm 2 FindIS(G)
Input: Intersection Graph G(V,E, u : V�R), Permutation σ
Output: Independent Set M in G

1: M ← ∅;
2: K = |V |;
3: for i← 1 to K do
4: if σ(i) =

(
Ri, s

α
p (tp), s

ε
d(td)

)
∈ V then

5: find the triple φ′ =
(
Ri, s

α′

p′ (tp′), s
ε′

d′(td′)
)
∈ V with

maximum uφ′ ;
6: end if
7: M ←M ∪ {φ′};
8: V ← V \N({φ′}, V );
9: end for

Note that at any new iteration, the graph contains nodes
with value smaller than or equal to rate(φi−1). The algorithm
stops when rate(φi) · u(M) is less than or equal to B; r is
set equal to min{ B

u(M) , rate(φi−1)}. The FindIS Algorithm
takes as input a fixed permutation of the node set V of
G. When a node in V corresponding to a candidate trip
suggestion φ =

(
Ri, s

α
p (tp), s

ε
d(td)

)
that concerns request Ri

is considered, then the triple φ′ =
(
Ri, s

α′

p′ (tp′), s
ε′

d′(td′)
)
∈ V

which has the highest utility uφ′ among all the candidate
trip suggestions concerning request Ri, is selected to be
added to the independent set M . We will say that φ′ is a
suggested trip within M and we will use uRi(M) to refer
to the utility of this suggestion. The independent set M is
produced after considering all the nodes in V and its utility
is u(M) =

∑
φ∈M uRi(M). The pseudocodes of algorithms

FindIS and ComputeTrips&Rewards follow.

Algorithm 3 ComputeTrips&Rewards
Input: Intersection Graph G(V,E, rate : V → R), Budget

B, Permutation σ
Output: The Set of Trip Suggestions M ; The Reward Rate r

1: G′(V ′, E′)← G(V,E);
2: for i← 1 to K do
3: M ← FindIS(G′, σ);
4: if rate(φi) · u(M) ≤ B then
5: r ← min{ B

u(M) , rate(φi−1)};
6: break ;
7: end if
8: V ′ ← V ′ \ {φi} ;
9: end for

The budget B in the (ComputeTrips & Rewards Algorithm
is determined as in the priority-based scheme but the FindIS
algorithm is used instead of the ComputeTripSuggestions. The
scheme is budget-feasible, i.e., the total amount of the rewards
given to the users does not exceed B. To see this, notice that
the reward for each user request Ri is r · uRi(M). Since r ≤
B/u(M) the total reward is

∑
φ∈M r · uRi(M) ≤ B. The

scheme is also individually rational, i.e., no user request Ri



gets as a reward less than the cost ci corresponding to the
value the user places on the additional cost/effort and/or time
he spends in order to change his original and/or destination
station. To prove this, let G′ = (V ′, E′) be the graph when the
mechanism stops. Then for each φ =

(
Ri, s

α
p (tp), s

ε
d(td)

)
∈

V ′ we have that ci/uφ ≤ r. If φ′ =
(
Ri, s

α′

p′ (tp′), s
ε′

d′(td′)
)

is
a suggested trip within M then ci/u

Ri(M) ≤ r. Therefore,
ci ≤ r · uRi(M) = ri. Finally, the scheme is truthful in the
sense that a users has no incentive to report higher cost than
his real cost because in this case either he will be suggested
the same trip as if he had reported the real cost, or no trip at
all. The proof of the truthfulness follows the same lines with
the proof of Lemma 2 in [8] and it is omitted due to lack of
space. Therefore, the following Lemma holds.

Lemma 2. The user cost and priority-based scheme is budget-
feasible, individually rational and truthful.

III. SETTING THE PRIORITIES

We focus on a pair of stations sp and sd and consider the
relocation of a vehicle from sp to sd with pick-up and drop-
off times tp and td, respectively. If δp(t) = op(tp) − wp(tp),
that is the excess (negative) of vehicles w.r.t. the target
occupancy of the pick-up station and δd(t) = wd(td)−od(td),
the respective excess of empty parking spots at the drop-
off station, we may define the relocation priority of moving
any vehicle α ∈ {1, ..., op(tp)} of sp to any parking place
ε ∈ {1, ..., cd − od(td)} of sd (spot-to-spot priorities). There-
fore, notation δαp (t) is introduced to indicate the excess of
vehicles if all vehicles {α + 1, ..., op(tp)} have been already
relocated from sp at time tp; δεd(t) will be used analogously.
The function π = π(sp, sd, tp, td, α, ε) should favour cases
where both δαp (t) and δεd(t) are positive and highly discourage
a relocation with δp(t) < 0 and δd(t) < 0; if only one of the
quantities is positive, intermediate values should be obtained.

The necessity of spot-to-spot priorities, rather than station-
to-station priorities, is based on the observation that if a
high priority is determined for a good amount of relocations
from station A to station B, then any algorithm based on
MWIS would easily select the whole set of the aforementioned
relocations and lead to overshoot the target occupancy for A
or B, while at the same time, other relocations which may
balance the system could be discarded. This indicates the need
for dampening any priority when getting closer to the target
occupancies. All of the above are summed and expressed by
our selection for the priority function π

(
sαp (tp), s

ε
d(td)

)
=

=



0.5
(
1− δαp (tp)δ

ε
d(td)

wp(tp)(cd−wd(td))

)
, δαp (tp) < 0 and δεd(td) < 0

1.5 +
δαp (tp)ε

wp(tp)(cd−wd(td)
, δαp (tp) < 0 and δεd(td) > 0

1.5 +
δεd(td)(cs−α)

(cd−wd(td))(cp−wp(tp))
, δαp (tp) > 0 and δεd(td) < 0

2 +
δαp (tp)δ

ε
d(td)

(cp−wp(tp))wd(td)
, δαp (tp) > 0 and δεd(td) > 0

Its range is [0, 1.5]∪(2, 3]. For points of discontinuity, we may
choose an intermediate value, i.e., δαp (tp) = 0, δεd(td) = 0 ⇒
π(·) = 1.75.

IV. EXPERIMENTAL EVALUATION

A. Dataset

We applied our incentivization scheme in an existing bike
sharing system operating in the city of Washington DC, US,
the “Capital Bikeshare” system. The system comprises 357
bike stations and approximately 2800 bikes. For our simu-
lation, we used historical data which are publicly available2.
These records include information about the pick-up and drop-
off stations, the departure time, the duration and the distance
of every trip completed. Trip data is categorized and archived
according to the year of their occurrence. For the purpose of
our work, we processed the data referring to the trips of the
3rd quarter of 2015, which account for over 1 million records.
From these data we extracted information about the demand
for bikes on every station, namely the arrival rate of the users
at the stations per hour and per day.

B. Simulation

In order to assess the two Schemes described in Section II,
we developed a Discrete Event Simulator (DES) using Java.
Our DES is principally a user generator; the arrival rate of
the users is based on the probabilistic model extracted from
the above discussed historical data. The main attributes of
users are: the station where they want to pick up a bike, the
drop-off station, the departure time and their willingness to
participate in the incentivization scheme. The actions pursued
by a user are decided by a Finite State Machine (FSM); the
FSM specifies a number of discrete states reached as a result of
these actions. The instantiation of a user represents the initial
state of the FSM, which is succeeded by another state upon
the user issuing a reservation request for a bike. The request
may be accepted or rejected by the system. The rejection of a
request corresponds to a final state of the FSM, which implies
the deletion of the user from the simulation procedure. In
case of acceptance the user needs to confirm the reservation
they have previously requested. Finally, upon the termination
of the trip, the user’s involvement in the simulation process
completes, hence, they are removed by the simulator. Every
message that is generated by a user and consequently by the
DES, is formatted as JSON string and is delivered to a server
through invoking an appropriate RESTful web service. The
server and the web services have been developed in the context
of an EU-funded program, the FP7 MOVESMART3, for the
purpose of a pilot program with electric scooters, in the city of
Vitoria-Gasteiz, Spain, where the incentivization scheme will
be validated in a real environment.

C. Results

We used Scheme I to draw the curves of the percentage
of rejected trips, the altered average price-per-km users are
asked to pay and the system’s revenue, all as a function of
the percentage of users willing to participate in our scheme.

2Available through the official site of the Capital Bikeshare System,
https://www.capitalbikeshare.com

3http://www.movesmartfp7.eu/



The results are the mean of 50 iterations of each simulation
for the 6-hour peak period of the day (9 a.m. to 3 p.m.) and
verify the soundness of Scheme I (see Figure 3). The minor
revenue reduction for the 25% and 50% mark is not disturbing,
eventually it captures the diminishing of the average price-
per-km as an initial “investment” of the system, amortized
by the decreasing rejection rate, as more and more users are
attracted by the scheme. The base of comparison for the price-
per-km and revenue changes is their respective result for 0%
participation in the incentivization scheme.
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Fig. 3. Scheme I: Rejection rate (•), price-per-km change (�) and revenue
change (�)

Scheme II has been mostly used as a user behavior modeler.
Here, all users participate in the scheme and self-declare the
minimum discount they demand in order to accept a system-
best trip option. The system’s budget is set (approximately)
to 20% of the cost of the maximum independent set of trips
that can be simultaneously accepted; different biddings are
simulated as Gaussian distributions around different mean
values, namely 15%, 25%, 35% and 45% of the respective
user-best trip cost, plus a uniform distribution over the interval
[0.1, 0.5].
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Fig. 4. Scheme II: Rejected requests (•) and revenue (�) vs. users’ claimed
discount

The simulation results match the expectation: the rejection
rate increases as the mean claimed discount (including the
mean 0.3 of the uniform distribution) increases. The revenue
of the system, however, is maximized when the users ask for
discounts of 20%–30%. Reduced claims indicate inefficient re-
distribution of the budget to nearly all users. Highly increased
claims reveal their unfavourable coupling with the increased
rejection rate.
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