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ABSTRACT
Bicycle sharing systems comprise fleets of bicycles made
available for shared use at low cost. Bicycles are distributed
in stations spread within an urban area and may be picked
up and dropped off at any station under flexible short-term
rental schemes. The design of bicycle sharing systems raises
several optimization problems as it involves the determina-
tion of the number, capacity and location of bicycle station
facilities as well as the bicycle fleet size along with the allo-
cation of bicycles among stations. These design decisions are
subject to several variables, restrictions and dependencies,
such as the predicted user demand patterns, the synergies
among the bicycle sharing system and the public transporta-
tion network, the budget available for setting up the system,
etc. In this paper we investigate the problem of the strategic
design of bicycle sharing systems. We develop and solve a
mathematical model for determining the location and num-
ber of vehicle stations, the optimal fleet size and the distribu-
tion of bicycles to the stations of a bicycle sharing system,
taking into account the user demands and the investment
cost. In order to test and validate our approach in realistic
settings, we applied the proposed model in the design of a
bicycle sharing system in the city of Athens, Greece.
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bicycle sharing system, strategic design, Athens, optimiza-
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1. INTRODUCTION
Bicycle Sharing Systems (BSSs) are networks of public use

bicycles distributed around a city for use at low cost. The
BSSs comprise short-term urban bicycle-rental schemes that
enable bicycles to be picked up at any bicycle station and
returned to any other bicycle station. Current BSSs deploy
bicycles which may be picked up and returned at specific lo-
cations (docking stations) and typically employ some sort of
customer authentication/tracking usually through the use of
an electronic subscriber card [9]. Recent research analyzed
the factors affecting the success of BSSs. Those involve bi-
cycle station location, cycling network infrastructure (bike
paths) and the operation of a bicycle redistribution system.

Vogel et al. [10] identify three main issues related to the
design, management and operation of bicycle as well as car
sharing systems. The proposed design and management
measures aim at alleviating imbalances in the availability
of bicycles/cars and are distinguished into three separate
planning horizons: (i) Strategic network design comprising
decisions about the location and the number of stations as
well as the bicycle/car stock at each station. (ii) Tactical
incentives for customer-based distribution of bicycles/cars
i.e., incentives given to users so as to leave their bicycle/car
to a station different to that originally intended and (iii)
Operational repositioning of bicycles/cars based on the cur-
rent state of the stations as well as aggregate statistics of
the stations’ usage patterns.

Given the complexity of bicycle facility planning and the
importance of station distribution for operating BSSs, for-
mal approaches are needed to model the problem variables
and derive optimal solutions with respect to minimizing in-
vestment cost and maximizing utility for the users. Among
others, optimal solutions should determine the number, lo-
cation and capacity of the stations and, optinally, the setup
of bicycle lanes. On the other hand, equally important for
BSSs success is to guarantee bicycle availability. Each sta-
tion must carry enough bicycles to increase the possibility
that each user can find a bicycle when needed. Therefore,



measures of service quality in the BSS include both the avail-
ability rate (i.e., the proportion of pick-up requests at a sta-
tion that are met by the bicycle stock on hand) and the
coverage level (i.e., the fraction of total demand at both ori-
gins and destinations that is within some specified time or
distance from the nearest station).

Several approaches have been proposed in the literature to
solve the main issues arising in bicycle/car sharing systems
(for a survey see [3], [4]). In this paper we investigate the
problem of strategic design of bicycle sharing systems. We
develop and solve a mathematical model for determining
the location and number of bicycle stations, the optimal
fleet size and the distribution of bicycles to the stations of
a BSS taking into account the user demands and the cost
of the investment. The approach estimates the demand by
analyzing data which is easy to obtain for any concerned
area of interest, therefore it is generic and easy to fine-tune.
Furthermore, we apply the proposed model for the design
of a bicycle sharing system in the center of Athens. The
rest of this paper is organised as follows. Section 2 presents
the related work, Section 3 discusses the formulation of the
problem and the solution approach while Section 4 presents
the results from the application of the model for the design
of a bicycle sharing system in the city of Athens.

2. RELATED WORK
The term “strategic design” is directly linked to the clas-

sic Facility Location problem: the optimization of opening
facilities within a region/city, in order to satisfy the desired
objective. This can be the minimization of the overall fa-
cility build cost, the minimization of transportation cost or
maximum distance to the facilities, or the demand coverage.
However, as Vehicle Sharing Systems concern usage of the
facilities (stations) which fluctuates within the day, corre-
lates the departure/pick-up to the arrival/drop-off station
and also depend on existing infrastructure (public trans-
portation), the formulation often becomes more complex.

Lin and Yang ([5]) have been the first to investigate the
problem of strategic design of bicycle sharing systems. The
problem investigated is the following: given a set of origins,
destinations, candidate sites of bike stations and the stochas-
tic travel demands from origin to destination, the problem’s
output comprises the location of bike stations, the bicycle
lanes needed to be setup and the paths to be used by users
from each origin to each destination, the objective being to
minimize the overall system cost. The problem has been
formulated as an integer nonlinear program and was solved
by CPLEX on a small instance. Recognizing the complex-
ity of the bicycle sharing system design optimization which
precludes exact solutions for instances of realistic size, Lin
et al. ([6]) approached the system’s design as a hub location
inventory problem that takes the coverage level into consid-
eration and proposed a greedy algorithm for efficiently solv-
ing it. The overall solutions cost is calculated utilizing the
mathematical cost model introduced in an earlier study [5].
When testing the algorithm in test instances for which enu-
meration is possible, the heuristic solution has been found
within a 2% gap from the optimal. Correia and Antunes
([2]) addressed the optimization problem of selecting sites
for locating depots in order to maximize the profits of a
one-way car sharing system. Revenues are generated from
renting the vehicles against some price rate while several
types of expenses are considered (maintenance costs, vehi-

cle depreciation costs and vehicle relocation costs). Three
mixed integer programs (MIP) have been modeled which de-
termine the optimal number, location, and capacity for the
depots.The optimization models have been tested in a case
study involving the municipality of Lisbon, Portugal.

Nair and Miller-Hooks ([8]) consider the problem of de-
termining the best locations for the stations, as well as the
capacity and initial number of vehicles of each station sub-
ject to a budget constraint. The solution’s quality is given by
the expected revenue, seen as a linear function of user flows.
The authors propose an equilibrium network design model
to formulate the problem of determining an optimal config-
uration of the BSS. The model takes the form of a bi-level,
mixed-integer program i.e. a program where the values of
some variables are optimal solutions of another optimization
problem which is called the lower-level problem.

Boyaci et al. ([1]) proposed a generic model for supporting
the strategic (number and location of required stations) and
tactical (optimum fleet size) decisions of one-way car-sharing
systems by taking into account operational decisions (i.e. re-
location of vehicles). The authors formulated a mathemat-
ical model and conducted sensitivity analysis for different
parameters. The objective function seeks to maximize the
overall profit which considers the revenue generated from ve-
hicle rentals in addition to user costs and system costs The
proposed model has been applied for planning and operat-
ing a station-based EV-sharing system in the city of Nice,
France. Martinez et al. ([7]) formulated a mixed integer
linear program (MILP) aiming to optimize the location of
bicycle stations and the fleet dimension. This study also con-
sidered bike relocation operations among docking stations.

3. A CAPACITATED FACILITY LOCATION
APPROACH

The Capacitated Facility Location is a demand cov-
ering via facility opening problem. The input is a weighted
set of demand points and a set of potential facility open-
ing points, all laying on a metric space, and the goal is to
determine the optimal number, positions and capacities of
facilities that can satisfy the total of the demand, given the
cost of opening and expanding each facility ([11]).

Our work concentrates in taking advantage of the relative
simplicity of this well-established problem and measure the
quality of solutions which are obtained when adopting this
static approach. It is, therefore, necessary to preprocess the
fluctuating demand within our region of interest as to obtain
the correct weight of the demand points. Following the work
of Wu et al. ([11]), we formulate the mixed-integer Linear
Program; we will only alter the objective function and insert
an additional constraint to fit our needs.

3.1 The Mixed Integer Linear Program for-
mulation

Let us first describe the input variables, as used for the
Program formulation.

• I: the set of demand points

• W(I): the weight of the demand points inserted in
the Linear Program. The exact selections of W are
extensively explained in the next Paragraph.

• J : the set of candidate station locations

• dij : the induced distances of each pair (i, j) ∈ I × J .



• fj , αj : the facility opening and expansion per capacity
unit cost respectively.

• Cj , Lj : the maximum and minimum allowable capac-
ity for each candidate station location

• B: the total available budget

For each pair (i, j) ∈ I × J , we define yij as the fraction
of the demand of point i ∈ I satisfied by facility j ∈ J .
Eventually, we desire that

∑
j∈J yij = 1 (1), in other words

point i’s demand should be covered by some of the stations.
Of course, in order for some station j to cover demand, it
should be opened and have a capacity cj which relates to
each demand point i through the fraction yij and it should
be analogous to the weight W(i); thus, we get constraint
(2). Constraints (3) and (4) concern the opening or not of
each potential station and (5) simply ensures the natural
meaning of quantities yij . The final is the budget constraint
(6). Overall, we have:

maximize:
∑
i∈I

∑
j∈J

Wi

dij
yij

s.t.:
∑
j∈J

yij = 1, i ∈ I (1)

∑
i∈I

Wiyij ≤ cj , j ∈ J (2)

Ljxj ≤ cj ≤ Cjxj , j ∈ J (3)

xj ∈ {0, 1}, j ∈ J (4)

yij ≥ 0, i ∈ I, j ∈ J (5)∑
j∈J

fjxj +
∑
j∈J

αjcj ≤ B (6)

3.1.1 The objective function
The MILP presented in [11] comprises a different objective

function:

minimize:
∑
i∈I

∑
j∈J

dijyij +
∑
j∈J

fjxj +
∑
j∈J

αjcj .

However, there is the problem of balancing the effect of the
budget terms, which correspond to money, with the leading
coverage term, which relates to the metric space. Intuitively,
we inserted the budget constraint, which absolutely captures
reality. As a second step, and due to the minimization of
the remaining

∑
i∈I
∑

j∈J dijyij is trivial and of no impor-

tance, we inverted the distances and favoured (once again in
a natural way) the usability and potential expected revenue
of high demand points satisfied by closely positioned, high
capacity stations.

3.1.2 Selecting and normalizing W
The weight-capacity constraint (2) gives the relation be-

tween the capacity of an opened station and the demand it
should cover. Having in mind that yij are normalized, W
should be capacity-normalized, as to properly induce the re-
quired cj . Therefore, if wi is the actual demand of point i,

then Wi =
max {Cj}
max {wi}

wi. In other words, we force that the

maximum weighted demand point i∗ covered only by the
maximum capacity station j∗ induces this maximum capac-
ity Cj for j∗. This works best if all maximum capacities are
equal; this is not counter-intuitive, so in the case studies we
have Cj = C, ∀j ∈ J .

3.1.3 The budget minimization MILP
We should note that by simply declaring the budget con-

straint 6 as the objective function, maintaining the set of
constraints (1)–(5), we obtain the minimum-budget solu-
tion which satisfies all demand. This MILP variant can be
used to then solve our main MILP for a minimum-budget,
maximum-objective solution (bi-level formulation).

3.2 Real Data processing and System Setup
In order to present valuable and rigid results, we chose

to collect real General Transit Feed Specification (GTFS)
data courtesy of the Athens Urban Transport Organisation.
These involve real time passages of metro, thermal and trol-
ley buses and tram through over 7,500 stops, for each day
of the week. These frequencies correspond (ideally) to the
demand for transportation, therefore we directly extract the
input set I and the weights W from this data. Let use note
that in all cases, we took into consideration the difference
in capacity between buses, metro and tram; therefore the
relative demand weights are bus-1, metro-5 and tram-2.

For all purposes, we extracted the hourly arrival rates for
every stop and every day of the week; all analysis was cho-
sen to be done for Friday, when the week’s maximum over-
all rates are spotted. The 21 actual timeslots defined were
early morning (<6:00), hourly intervals for 6:00. to 24:00
(18 slots), 24:00-2:00, and late night (>2:00). As a quite
extensive process of pre-processing was needed, and the ca-
pability of moving back and forth from selecting points on
google maps (to create a realistic system proposition) all
the way to getting the results as a vector of station capaci-
ties, we selected MATLAB optimization package as our LP
solver. We proceeded as follows:

1. We based our study on Athens’ Traffic Ring. The Traf-
fic Ring surrounds the city centre and marks an area
where -due to the high demand to reach- it is not al-
lowed for all private cars to enter at all times (even/odd
day-car licence rule).

2. We confined to a small extension of Athens’ Traffic
Ring. The extension for our pursposes was based on
two remarks:

(a) There is no reason to have a high demand point
on the boundary of the under-study area; such
points probably involve a metro station, ideal to
attract demand from the outside of the centre.

(b) Special facilities a little outside the Traffic Ring
(mostly University facilities and some student houses)
also “pull” the boundary towards them.

3. 688 stops-demand points were taken into account and
were clustered to 300, by setting a threshold a little
less than 50m as the closest two demand points may
lie. For each cluster, the demand was accumulated
from all points of the cluster.

4. 272 potential station locations were manually selected.
Points Of Interest and neighbourhood squares were the
first to include as such, as well as a realistic set of
spots to maintain a somewhat more even distribution
of potential locations.

5. The facility opening/expansion cost ratio is set to 5:1
for this case. It is a rough estimation based on related
work and published figures. Along with presenting our



results, we will explain what to anticipate if the ratio
is changed.

6. Finally, as an attempt to be realistic, we confined each
station to feature at least 10 and at most 50 docks.

3.2.1 Legend – figure guide
In what follows, we will present illustrations of the pro-

posed solutions drawn from solving the Linear Program.

- The demand points are presented as empty blue-grey
circles.

- The larger an empty circle is, the greater the demand
at the associated point.

- The potential stations are shown as red filled circles.

- The larger a red circle is, the greater the capacity sug-
gested by the solver for the associated point.
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Figure 1: Athens’ Ring (green boundary), demand points
and candidate stations.

4. RESULTS AND DISCUSSION
In this Section, we will present two main results: a justi-

fication for statically approaching the strategic design prob-
lem, without significant loss of information due to the de-
mands fluctuation; and a measure for monitoring the quality
of a series of solutions with increasing budget.

4.1 Robustness under static demand conver-
sion

Having a total of 21 (or any other selected number of)
timeslots to give the picture of one point’s demand through-
out a day, it is reasonable to presume that fully satisfying
the whole day’s demand means satisfying each timeslot’s
demand. Consequently, we may consider a specific times-
lot, solve the capacitated facility location problem for this
interval, and synthesize the 21 solutions to get the unique
final solution. This procedure is costly, even if the final syn-
thesis execution time is negligible. In order to diminish this
running time, a natural question is whether one run of the
MILP is good enough to avoid another 20 runs.

We selected 3 different synthesis functions, in fact, statis-
tic measures and compared the results as follows, Wt being
the demand vector of timeslot t:

• Mean value: SOL(Wt) vs. SOL(Wt);

• Maximum value: SOL(max{Wt}) vs. max{SOL(Wt)};
• “Mixed” value, the minimum of the maximum value

and the mean value shifted by the standard devia-
tion, min{max,mean + sigma}: SOL(mxd{Wt}) vs.
mxd{SOL(Wt)}.

In other words, we study the effect of altering the stage
of synthesis. It is expected that the mean of the solutions
SOL(Wt) is a feasible point of the mean-demand MILP (we
may divide constraint 2 by the number of timeslots chosen),
however, due to the discretization of the opening station
variables xj , the linearity is impaired.

Since the number of stations is large, as the comparison
result we consider the histograms of the occurring differences
between the suggested (synthesized) capacities. The exper-
iment was done for different budgets (between 2000-3000),
and three different metrics: squared and normal euclidean
distances, as well as a 50%-50% mixed euclidean-Manhattan
distance1.

Figure 2 illustrates some of the results, though all experi-
ments lead to the same conclusion: under any of the 3 syn-
thesis functions, the solution obtained when applying the
synthesis function to the demands, before solving a single
MILP is essentially the same as synthesizing the solutions
of 21 run MILPs.

Moreover, the differences are reasonable: due to the min-
imum capacity constraint from one hand -a station opened
with 10 docks for, say 15 of the 21 timeslots, and closed for
the remaining 6, will yield an average 7.14 docks, a quan-
tity which cannot be obtained when solving the LP. Analo-
gously for the maximums, among the 21 solutions different
stations are chosen to be opened, so the maximum capacity
for more than the ideal-number-to-open stations is greater
or equal than 10. This explains the significant amount of
stations differentiated by 10 docks, however, excluding this
inevitable phenomenon, the rest of the stations present no
significant differences in the proposed capacities. Finally,
selecting the mixed measure, the result resembles the result
for the maximum, with a favourable shift and smoothing of
the larger differences. Thus, we shall calculate all solutions
based on the day’s “mixed” demand for each point.

4.1.1 The effect of a cut-off distance
As previously, let the points of interest (demand, potential

station) define a metric space. In such systems, an opera-
tional fact for users, who invoke demand at i, is the existence
of a cut-off distance, beyond which all stations j are consid-
ered not to satisfy their demand. This can be inserted in our
MILP’s objective function as defining Wi/dij = 0 whenever
dij > dcut, plus adding an extra constraint for the upper
bounds of yij : dij > dcut =⇒ yij ≤ 0.

Once again, we compared solutions for different budgets,
the three distances mentioned earlier (euclidean, squared eu-
clidean and “50-50 mixed” euclidean-Manhattan) and differ-
ent cut-off distances, ranging from 1km down to the thresh-
old distance, the cut-off distance below which the MILP is
infeasible. Our conclusions are the following:

1. When using the squared euclidean distance, the tail of
the terms 1

dij
is diminished comparing to non-squared

distances; it introduces practically a cut-off filter, so
no dcut significantly alters any result.

1dM (x, y) = ||x−y||1
2

+

√
||x−y||2

2
.
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Figure 2: Budget: 2500. Distance: squared euclidean (left
column), mixed (right column).

2. The differences in the solutions were not so impor-
tant as to indicate a “better” selection for the metrics.
Also, there is an inherent to the point sets I and J
low threshold of 685m for dcut, below which the LP
becomes infeasible, i.e. the demand constraints cannot
be satisfied, no matter how big the budget is.

The above still left us free to settle to what better de-
scribes the point-to-point walking distances in Athens, plus
adopt the following threshold as cut-off distance: we shall
calculate all solutions based on the 50%-50% “mixed” euclidean-
Manhattan distance for our metric space, cut-off at 0.7km.

4.2 Solution behaviour vs. budget selection
Having established an initially good quality of our solu-

tions, we proceeded to determine at is the minimum budget
for which the demand is covered. Using the min-budget vari-
ant of the MILP, we obtained MinBudget=1783. We then
proceeded to solve the LP with a first budget constraint of
this very quantity and gradually increasing (steps of 250) to
get a series of images for the proposed Bike Sharing System
(Figure 3 – the actual Athens’ Ring is marked in green).

The ending of the series at the budget of 3500 is not ac-
cidental. For every budget greater or equal to 3499, the
solution remains the same; we may say there is a budget

saturation which is due to the globally optimal partition-
ing of quantities yij for each i ∈ I and with respect to the
minimization of the objective function: greater budget ad-
mits greater station capacities, which actually relaxes the
weight-capacity constraint and therefore the convex combi-
nations of the demand coverage are displaced towards one
of their marginal points (yij∗ = 1 for some j∗ and yij = 0
for j ∈ J \{j∗}), as those are favoured by the multiplication
in objective function. Once the appropriate marginal points
all become feasible, the objective function meets its global
minimum.
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(a) Budget 1783. Stations: 44.
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(b) Budget: 2000. Stations: 76.
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(c) Budget: 2250. Stations: 111.
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(d) Budget: 2500. Stations: 128.
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(e) Budget: 2750. Stations: 143.
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(f) Budget: 3000. Stations: 160.
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(g) Budget: 3250. Stations: 176.
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(h) Budget: 3500. Stations: 192.

Figure 3: Athens’ Ring proposed BSS.

4.3 Solution quality
It is obvious, even without the figures presented, that



with a sufficiently high budget, one achieves the best out-
come. We attempt to give a tangible result as to when a
non-optimal (or non-saturated) budget can be considered as
“good enough”, so to address the more realistic case where
limited budget is available.

Suppose that given a budget B the solution (amongst the
others) suggests to open Station j with a capacity of Sj .
If all solutions subject to a relaxed budget constraint (i.e.
increased budget) B′ > B still suggest the opening of station
j with S′j ≥ Sj , we may reasonably admit that the opening
(at budget B) is correct/appropriate/well established.

Using this as an indicator of solution quality, we define the
unfavourable difference of a solution/capacity vector S(B1)
from S(B2), B1 < B2: let J be partitioned into the mu-
tally disjoint sets J+

B1,B2
, J0

B1,B2
and J−B1,B2

. It is j ∈
J+
B1,B2

⇐⇒ Sj(B2) − Sj(B1) > 0 and analogously for

J0 and J−. The unfavourable difference is defined as:

UB1,B2 = −
∑
j∈J−

(
Sj(B2)− Sj(B1)

)
.

In other words, U = 0 means that increasing the budget did
not decrease the suggested capacity of any of the stations.

Figure 4 can then be understood to indicate that the dif-
ference U2250,2500 between solution for budget 2500 (S(2500))
and the previously examined (S(2250)) is an order of mag-
nitude less than U2000,2250. The same stands for larger bud-
gets, while the first two comparisons yield bad results. In
all, the solution becomes quite steady/good at around the
2250 budget mark.

2,000 2,500 3,000 3,500
0

200

400

Maximum budget (B2)

Unfavourable difference

Figure 4: Evaluating the solution quality – BSS.

4.3.1 Different facility opening/expanding cost ratios
The selected ratio 5:1 for the facility opening cost over

the facility expansion cost does only quantitatively affect
the results. Since the selected objective function does not
depend on the facility opening cost, any solution for the 5:1
ratio, say for budget equal to 3000, can be converted to the
equivalent solution for a shrunk budget: 160 opened stations
consume 800 out of the 3000 of the budget. If the ratio was
2:1, then those 160 stations would require 480 budget units
less, so this exact solution is not only a feasible solution for
budget 2520 with the 2:1 ratio, it is also the best one.

5. CONCLUSION
We examine the adequacy of the Capacitated Facility

Location Problem as a model for the strategic design of Ve-
hicle Sharing Systems. Using real GTFS data for the city

of Athens and creating a realistic set of potential bicycle
stations around the city centre, we used a fixed MILP to
obtain marginally feasible solutions w.r.t. a first parame-
ter (budget) and evaluated the solutions’ behaviour when
changing the parameter, while fed with a our calculated and
clustered demand vector. We finally assess the quality of
our solutions based on a concrete measure of consecutive so-
lutions’ similarity. The results indicate a good selection of
the particular bi-level formulation and, for our case study,
establish an original proposal for the city of Athens.
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