# Two stories about distortion in social choice

Ioannis Caragiannis

iannis@cs.au.dk



#### Two stories...

- Based on recent work on the distortion of
  - impartial culture electorates (with Karl Fehrs)
  - sortition (with Evi Micha and Jannik Peters)

#### The distortion of impartial culture electorates

# Voting

• Voters (agents)



• Candidates (alternatives)





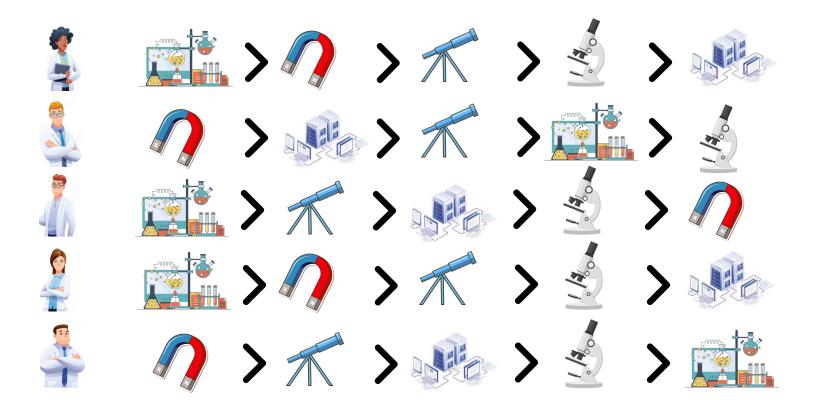
• Agents



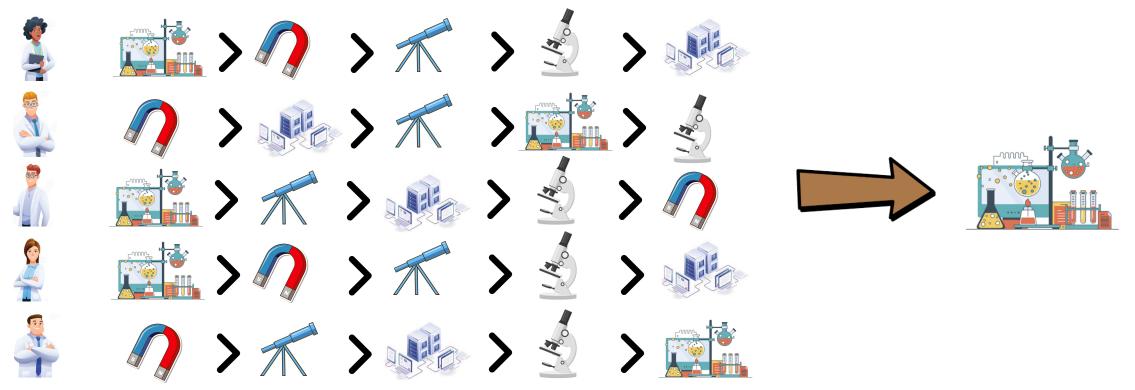
#### • Agents submit rankings of alternatives



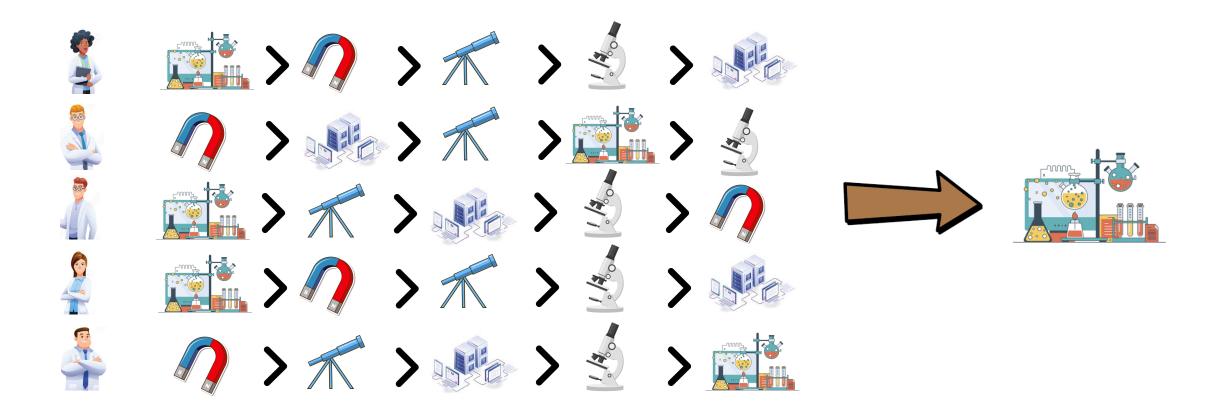
- Agents submit rankings of alternatives
- A voting rule takes such a profile of rankings



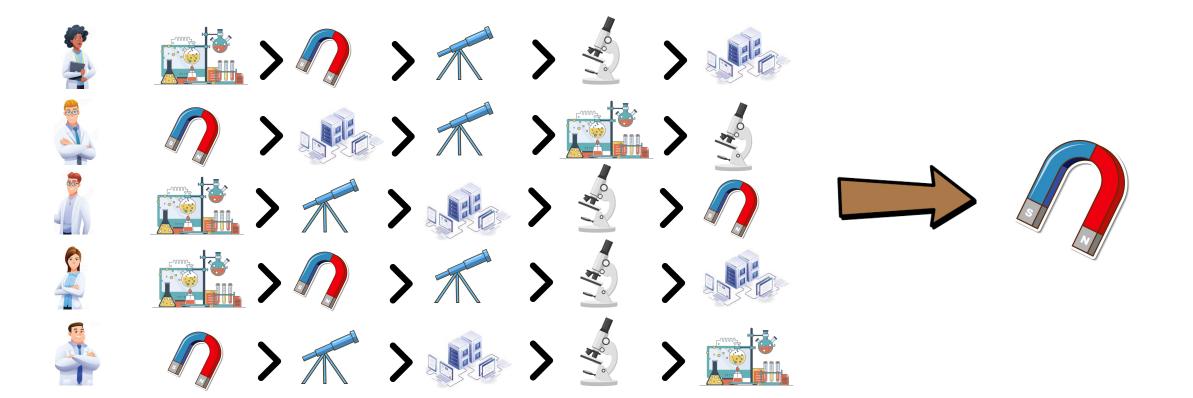
- Agents submit rankings of alternatives
- A voting rule takes such a profile of rankings and selects a winnning alternative



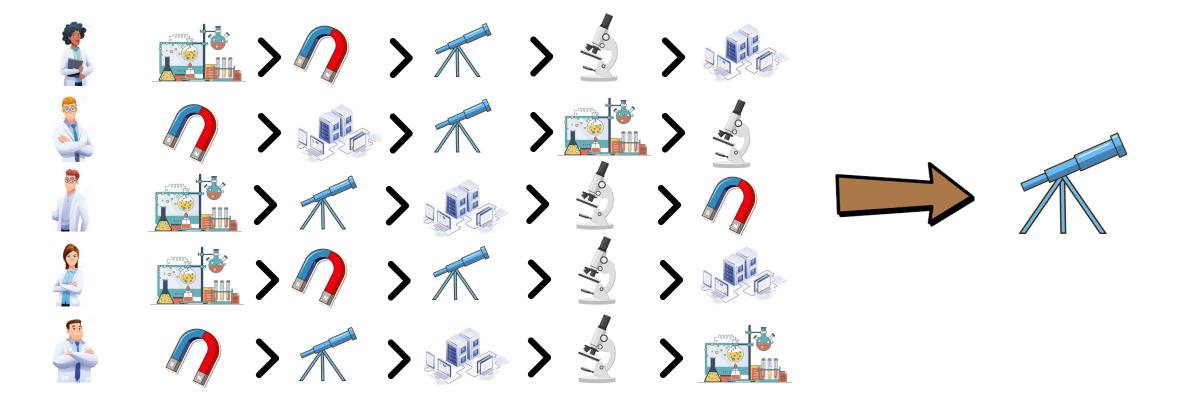
• Plurality



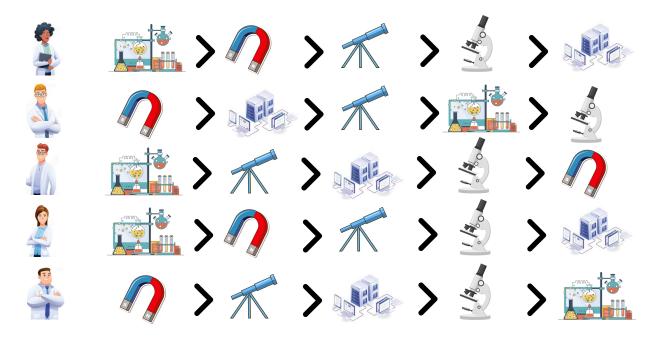
• Plurality, Borda



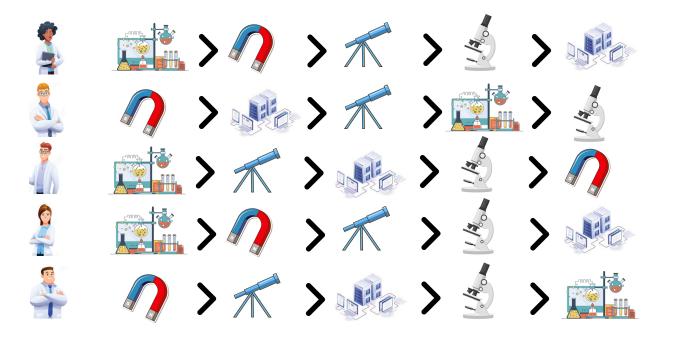
• Plurality, Borda, Veto

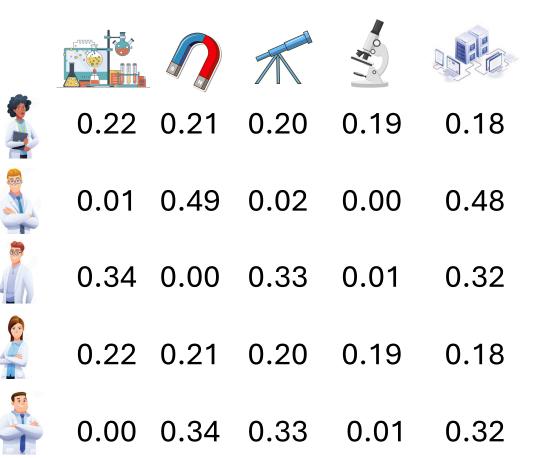


 Each agent has hidden valuations for the alternatives that are consistent to her ranking



 Each agent has hidden valuations for the alternatives that are consistent to her ranking

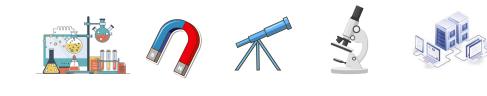




- Each agent has hidden valuations for the alternatives that are consistent to her ranking
- Quality of an outcome = its social welfare

|      |      |      | 1° 1% |      |
|------|------|------|-------|------|
| 0.22 | 0.21 | 0.20 | 0.19  | 0.18 |
| 0.01 | 0.49 | 0.02 | 0.00  | 0.48 |
| 0.34 | 0.00 | 0.33 | 0.01  | 0.32 |
| 0.22 | 0.21 | 0.20 | 0.19  | 0.18 |
| 0.00 | 0.34 | 0.33 | 0.01  | 0.32 |

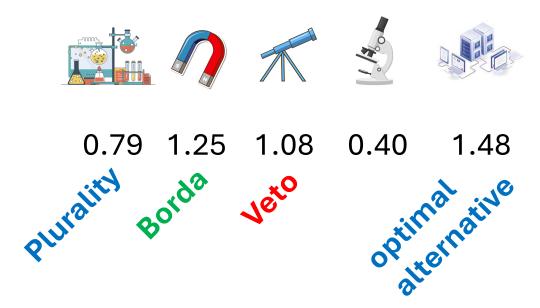
- Each agent has hidden valuations for the alternatives that are consistent to her ranking
- Quality of an outcome = its social welfare



0.79 1.25 1.08 0.40 1.48

|      |      |      | 1, 12,0 |      |
|------|------|------|---------|------|
| 0.22 | 0.21 | 0.20 | 0.19    | 0.18 |
| 0.01 | 0.49 | 0.02 | 0.00    | 0.48 |
| 0.34 | 0.00 | 0.33 | 0.01    | 0.32 |
| 0.22 | 0.21 | 0.20 | 0.19    | 0.18 |
| 0.00 | 0.34 | 0.33 | 0.01    | 0.32 |

- Each agent has hidden valuations for the alternatives that are consistent to her ranking
- Quality of an outcome = its social welfare



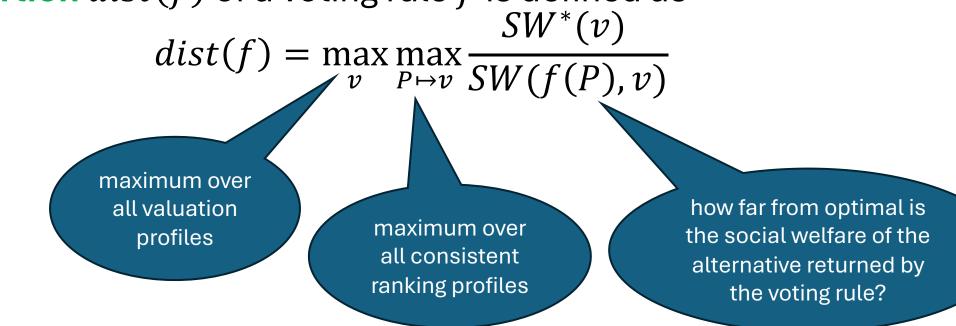
|      |      |      | 1° 1% |      |
|------|------|------|-------|------|
| 0.22 | 0.21 | 0.20 | 0.19  | 0.18 |
| 0.01 | 0.49 | 0.02 | 0.00  | 0.48 |
| 0.34 | 0.00 | 0.33 | 0.01  | 0.32 |
| 0.22 | 0.21 | 0.20 | 0.19  | 0.18 |
| 0.00 | 0.34 | 0.33 | 0.01  | 0.32 |

#### Formal definitions

- Set of *n* agents *N*, set of *m* alternatives *A*
- Agent  $i \in N$  has non-negative valuation  $v_i(a)$  for each alternative  $a \in A$
- Valuation profile v (valuations of all agents for all alternatives)
- The ranking  $\succ_i$  of agent  $i \in N$  is consistent to her valuations, i.e.,  $a \succ_i b$  implies that  $v_i(a) \ge v_i(b)$ .
- Ranking profile  $P = (\succ_1, \succ_2, ..., \succ_n)$ . Overall,  $P \mapsto v$
- The **social welfare** SW(a, v) of alternative  $a \in A$  in valuation profile v is its total valuation, i.e.,  $SW(a, v) = \sum_{i \in N} v_i(a)$
- **Optimal alternative** is the one that maximizes the social welfare
- Optimal social welfare  $SW^*(v) = \max_{a \in A} SW(a, v)$

## Formal definitions (contd.)

- Voting rule: a function f that takes as input a ranking profile P and returns an alternative  $a \in A$
- The distortion dist(f) of a voting rule f is defined as



## Formal definitions (contd.)

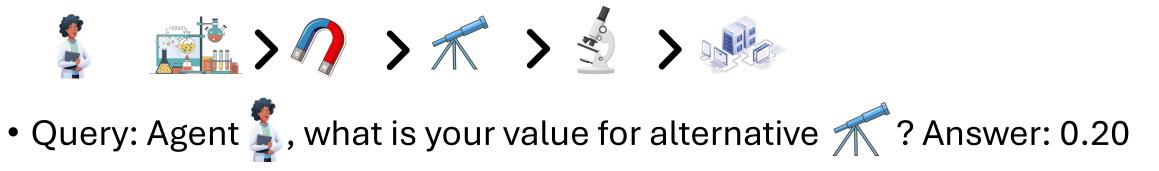
- Voting rule: a function f that takes as input a ranking profile P and returns an alternative  $a \in A$
- The distortion dist(f) of a voting rule f is defined as  $dist(f) = \max_{v} \max_{P \mapsto v} \frac{SW^*(v)}{SW(f(P), v)}$
- Procaccia & Rosenschein (2006)
- Boutilier, C., Haber, Lu, Procaccia, & Sheffet (2015)
- Ebadian, Kahng, Peters, & Shah (2024)
- Anshelevich, Filos-Ratsikas, Shah, & Voudouris (2021)

#### Flavor of distortion results

- Plurality has distortion  $O(m^2)$ , which is optimal among deterministic voting rules
- The best possible distortion among all (possible randomized) voting rules is  $\Theta(\sqrt{m})$
- Restrictions: unit range, unit sum valuations
- Without such restrictions, no distortion bound is possible for deterministic rules, and the **trivial randomized rule** that returns an alternative uniformly at random has best possible distortion

## Low-distortion using value queries

- The idea: in addition to the ranking profile, the voting rule (mechanism) can make a small number of value queries to each agent
- The query to agent *i* for alternative *a* returns the value  $v_i(a)$



- Amanatidis, Birmpas, Filos-Ratsikas, & Voudouris (2021)
- Main result: Constant distortion with  $O(\ln^2 m)$  queries per agent
- Feature: **no restrictions** on the valuations

## The distortion of impartial culture profiles

- C. & Fehrs (2024)
- A common probability distribution F
- Independently for each agent-alternative pair, agent  $i \in N$  draws a random value  $v_i(a)$  for alternative  $a \in A$  according to p.d. F
- The consistent profile P(v) is obtained from v by breaking ties among alternatives uniformly at random
- The **average distortion** of a voting rule/mechanism *f* on ranking profiles that are consistent to random values drawn from p.d. *F*

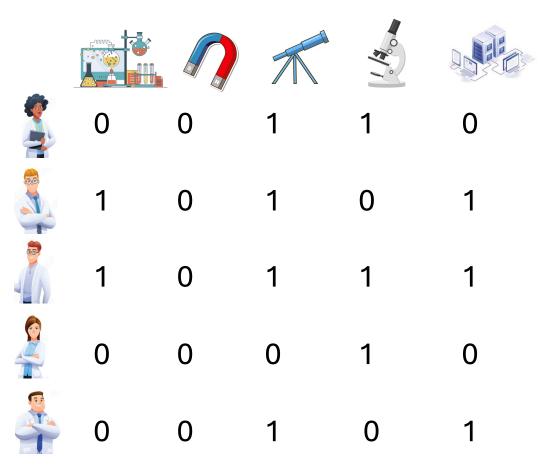
$$avd(f,F) = \frac{\mathbb{E}_{v \sim F}[SW^*(v)]}{\mathbb{E}_{v \sim F}[SW(f(P(v),v),v)]}$$

# **Binary distributions**

• The p.d. F returns 1 with probability p and 0 otherwise

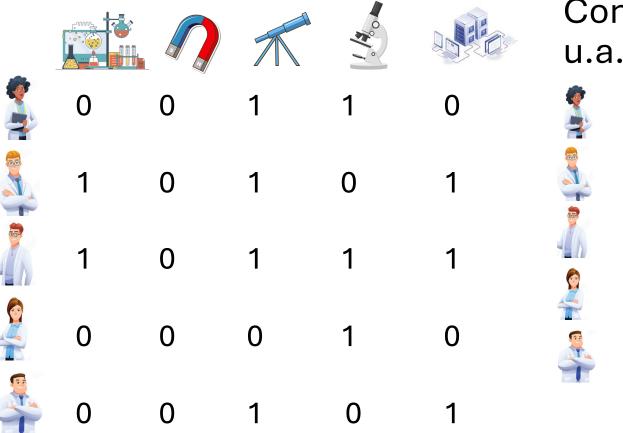
## **Binary distributions**

• The p.d. F returns 1 with probability p and 0 otherwise



## **Binary distributions**

• The p.d. F returns 1 with probability p and 0 otherwise



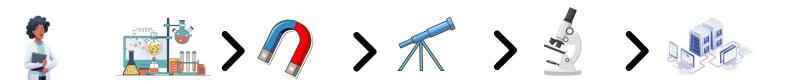
Consistent ranking profile, breaking ties u.a.r.



#### Average distortion can be high

- Consider a binary distribution with  $p = \frac{1}{nm}$
- The numerator in the average distortion definition is a **constant**
- W.h.p., there are very few 1s in the top positions of the rankings
- Without making queries, the voting rule cannot guess which among the top alternatives have these 1s
- Then, the alternative returned will have some 1 in the top position with probability at most O(1/m)
- Yields an average distortion of  $\Omega(m)$ , i.e., as bad as picking a fixed or a random alternative

- F (i.e., p) is known to the mechanism
- Assume that we query the value of agent s for alternative

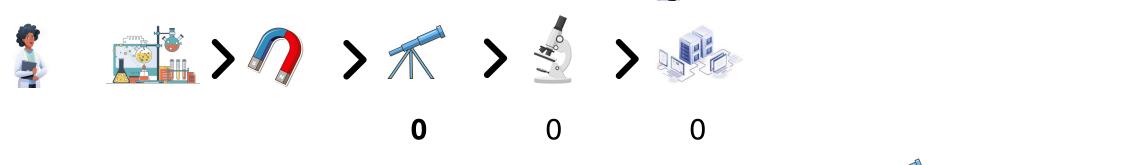


- F (i.e., p) is known to the mechanism
- Assume that we query the value of agent s for alternative



• If the value returned is 1, all alternatives ranked above 术 have value 1

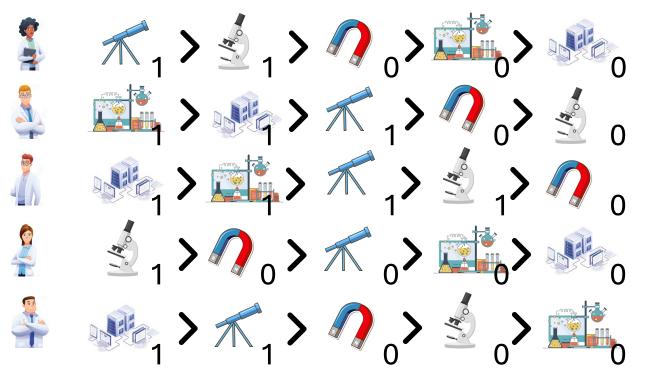
- F (i.e., p) is known to the mechanism
- Assume that we query the value of agent s for alternative



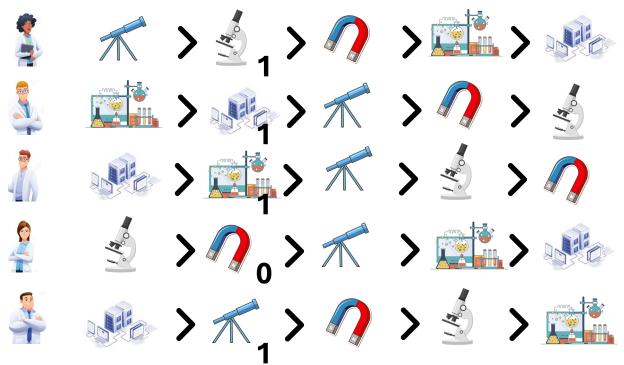
- If the value returned is 1, all alternatives ranked above 术 have value 1
- Otherwise, all alternatives ranked below 术 have value 0

- One query per agent
- Implied social welfare of alternative a = number of agents who returned 1 to the query and rank a at the queried position or above

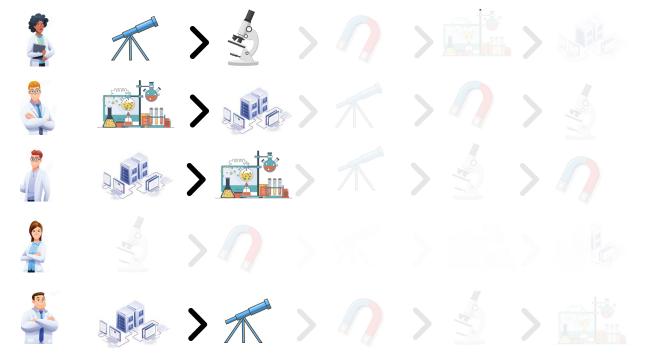
- One query per agent
- Implied social welfare of alternative a = number of agents who returned 1 to the query and rank a at the queried position or above



- **One query** per agent (e.g., at the second position)
- Implied social welfare of alternative a = number of agents who returned 1 to the query and rank a at the queried position or above



- **One query** per agent (e.g., at the second position)
- Implied social welfare of alternative a = number of agents who returned 1 to the query and rank a at the queried position or above



- **One query** per agent (e.g., at the second position)
- Implied social welfare of alternative a = number of agents who returned 1 to the query and rank a at the queried position or above



#### Mechanism Mean

- Input: a profile *P* consistent to random agent-alternative values drawn from a binary p.d. *F* with known *p*
- Query each agent at position max{1, [pm]}
- Return the alternative with highest implied social welfare

- Theorem: Mechanism Mean has constant average distortion
  - $\bullet$  Analysis distinguishes between cases for small, medium, and large p

#### The random threshold mechanism RTMean

- Input: a profile P with underlying valuations drawn from a p.d. F
- Uses k thresholds parameters  $\ell_1 < \ell_2 < \cdots < \ell_k$
- Select an integer t uniformly at random from [k]
- Sets  $p = \Pr_{z \sim F}[z \ge \ell_t]$
- Simulate an execution of MEAN on the binary distribution  $F_p$  by
  - making the same value queries as MEAN for  $F_p$ , but
  - interpreting the values returned to each query as 1 if above  $\ell_t$  and 0 otherwise
- Return as output the alternative that MEAN selects

#### The random threshold mechanism RTMean

- Theorem: For every p.d. F with expectation  $\mu$  and variance  $\sigma^2$ , there are thresholds  $\ell_1 < \ell_2 < \cdots < \ell_k$  so that the average distortion of mechanism RTMean is at most  $O\left(\ln m + \ln \frac{\sigma^2}{\mu^2}\right)$
- Note: mechanism RTMean makes exactly **one query**

## End of the first story

- Improved results for worst-case distortion
  - Randomized mechanisms with worst-case distortion  $O(\ln m)$  using  $O(\ln m)$  queries per agent
  - Lower bound on  $\Omega(\ln m)$  the number of queries necessary for constant worst-case distortion
- Open problems
  - Is there a mechanism that achieves **constant distortion** for every p.d. *F* using a **constant number of queries** per agent?
  - What about **unknown p.d.** *F*?
  - **Tight bound** on #queries for constant worst-case distortion?

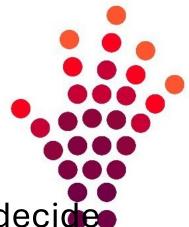
#### The metric distortion of sortition

## Sortition



- The practice of selecting a citizen's assembly (or panel) to decide among alternatives for a given issue
- Desired property: **fairness** in the selection of citizens so that different groups are **represented proportionally**
- Flanigan, Gölz, Gupta, Hennig, & Procaccia (2021)
- Meir, Sandomirskiy, and Tennenholtz (2021)
- Ebadian, Kehne, Micha, Procaccia, & Shah (2022)
- Ebadian & Micha (2023)

### Sortition



- The practice of selecting a citizen's assembly (or panel) to decide among alternatives for a given issue
- Our focus: efficiency of decisions under fairness constraints in the selection of the panel
- Tool: a variant of **distortion**
- C., Micha, & Peters (2024)

# Our setting

- Citizens (or agents) and alternatives are points in a metric space
- **Panels** are subsets of agents of size *k*
- The **social cost** *SC*(*a*, *P*) of alternative *a* for a panel *P* is defined as the total distance of the alternative to all members of *P*, i.e.,

$$SC(a, P) = \sum_{i \in P} d(i, a)$$

- We denote by SC(a) the social cost of alternative a (for all agents)
- The optimal alternative is the one with the minimum social cost  $SC^*(A) = \min_{a \in A} SC(a)$
- Among a set of alternatives A for a given issue, the panel P selects the alternative P(A) of minimum social cost for it















11

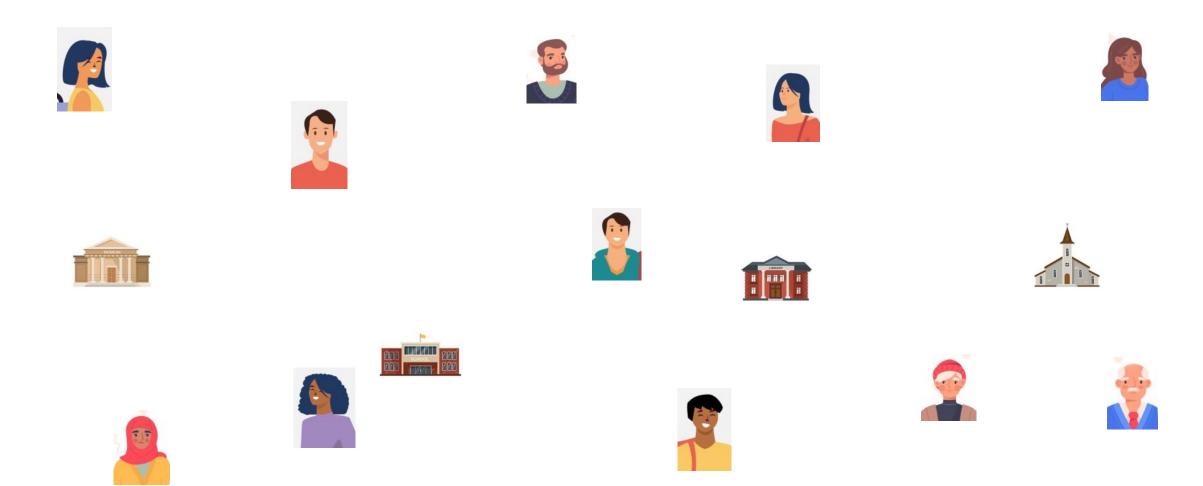


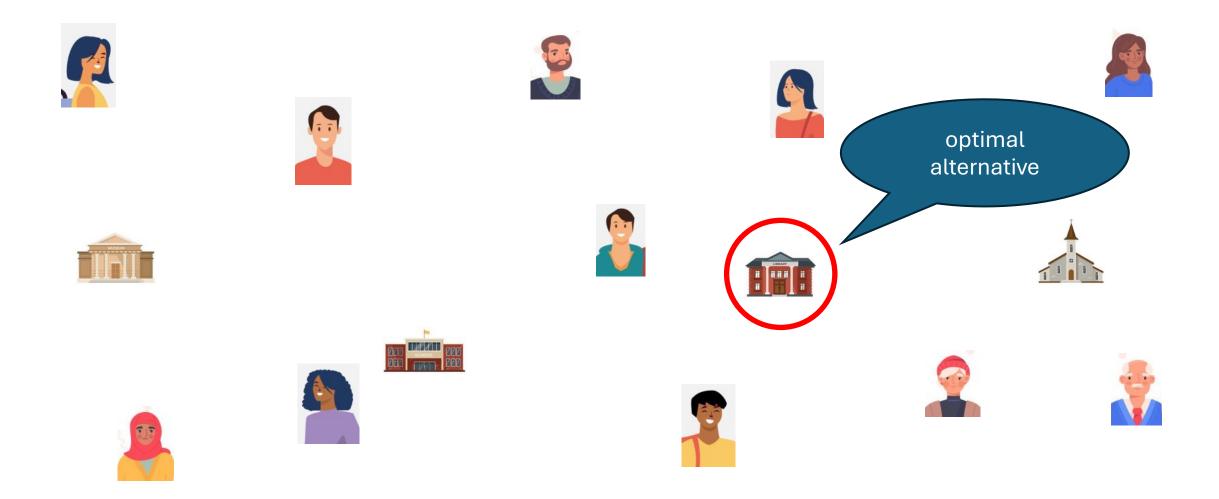


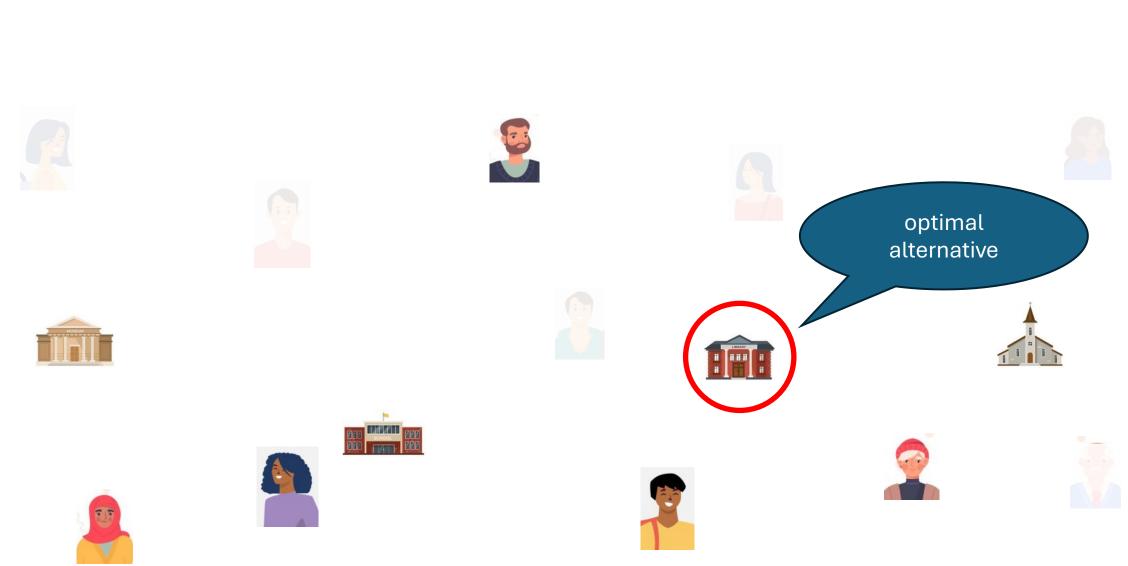


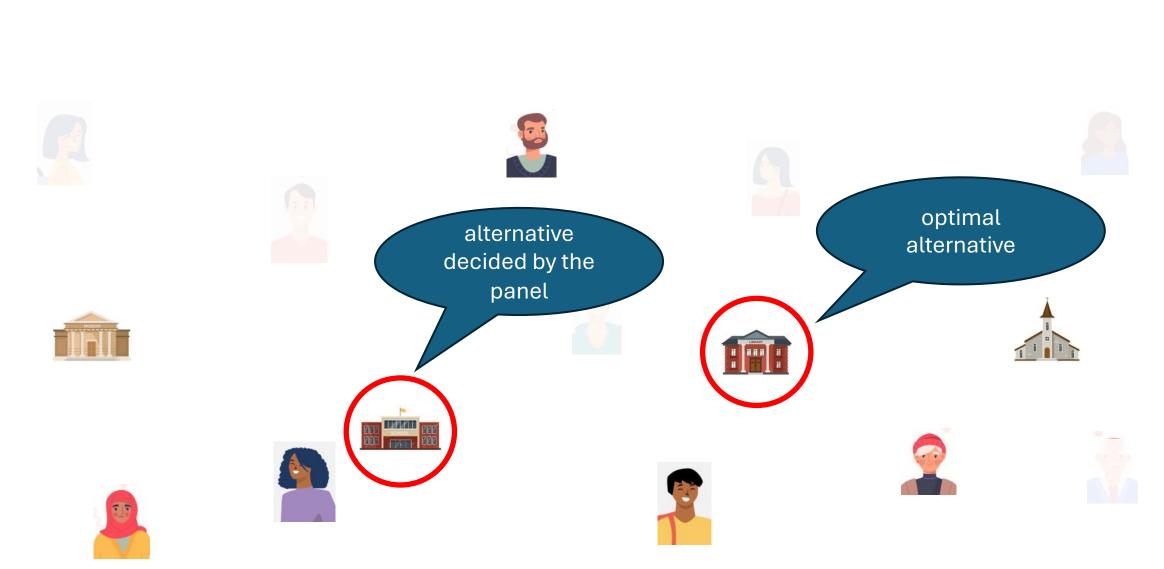












#### Metric distortion

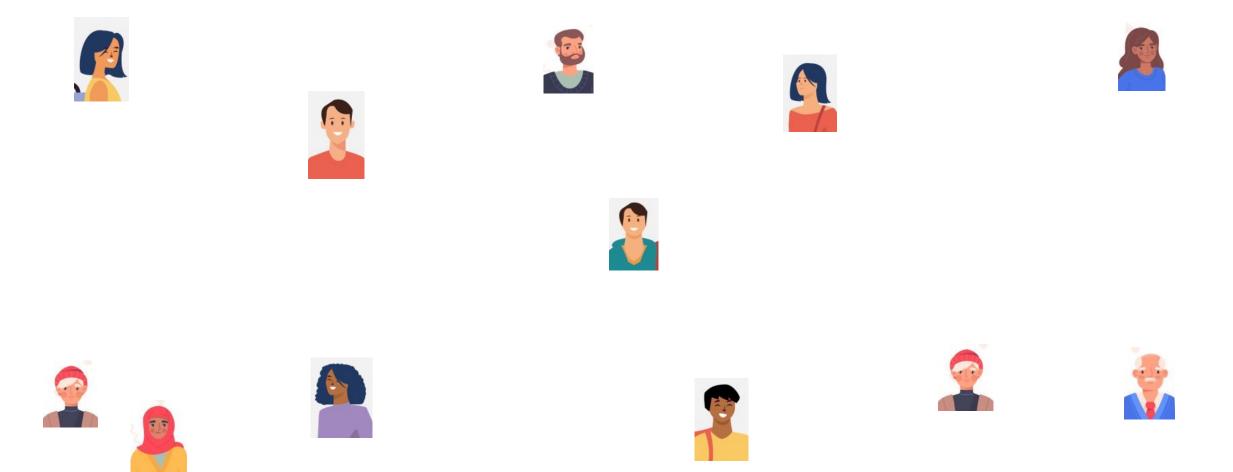
- Let *F* be a **randomized panel selection algorithm** (i.e., a probability distribution)
- The **ex ante metric distortion** of *F* for the set of *m* alternatives *A* is  $eadist(F) = \frac{\mathbb{E}_{P \sim F}[SC(P(A))]}{SC^*(A)}$

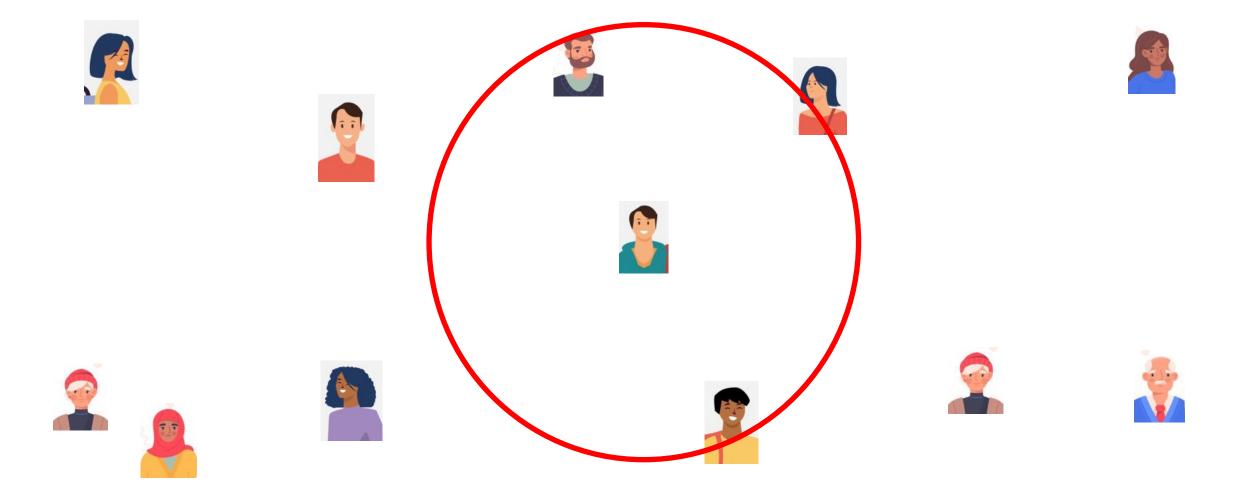
### Fair selection algorithms

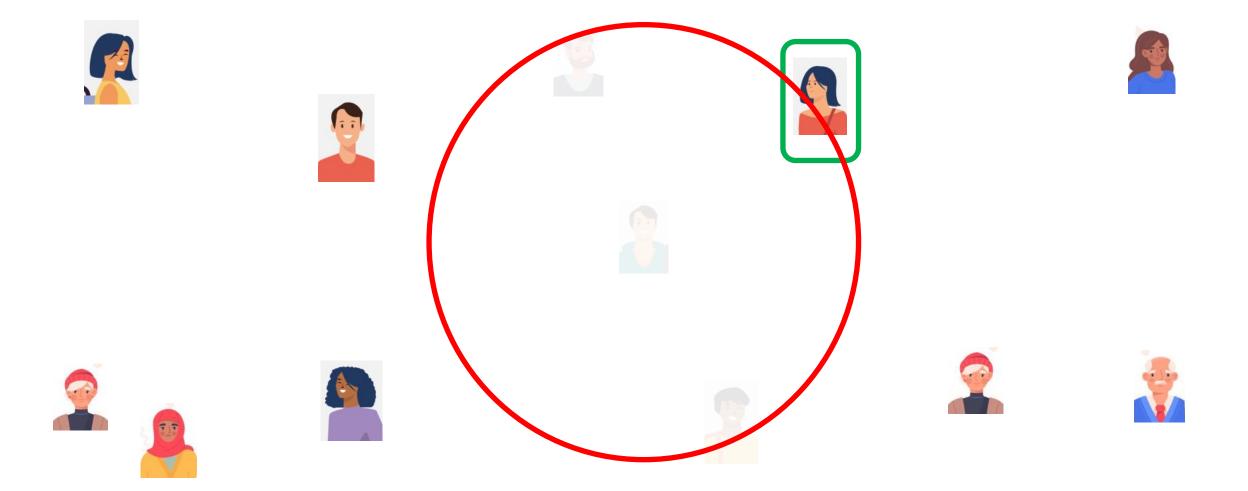
- Fairness criterion: the probability that a given agent is selected in the panel is k/n
- E.g., the algorithm that selects uniformly at random among all panels
- **Theorem**: The algorithm that selects uniformly at random among all panels of size  $k = O(\varepsilon^{-2} \ln m)$  has ex ante metric distortion  $1 + \varepsilon$  for every set of m alternatives
- Proof uses Azuma's inequality to handle minor correlations
- Drawback: ex post distortion can be very high

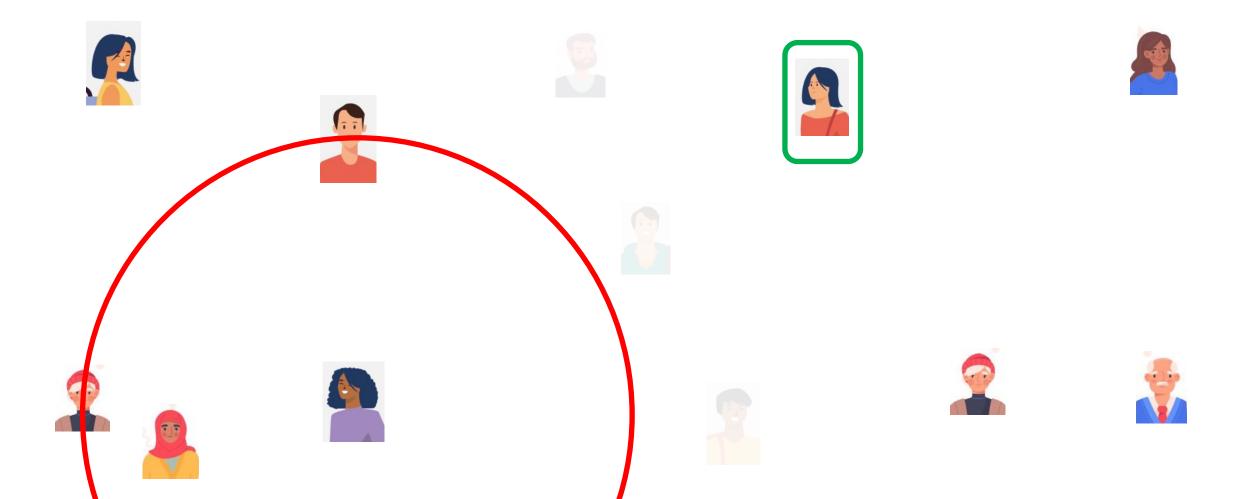
## Fair greedy capture

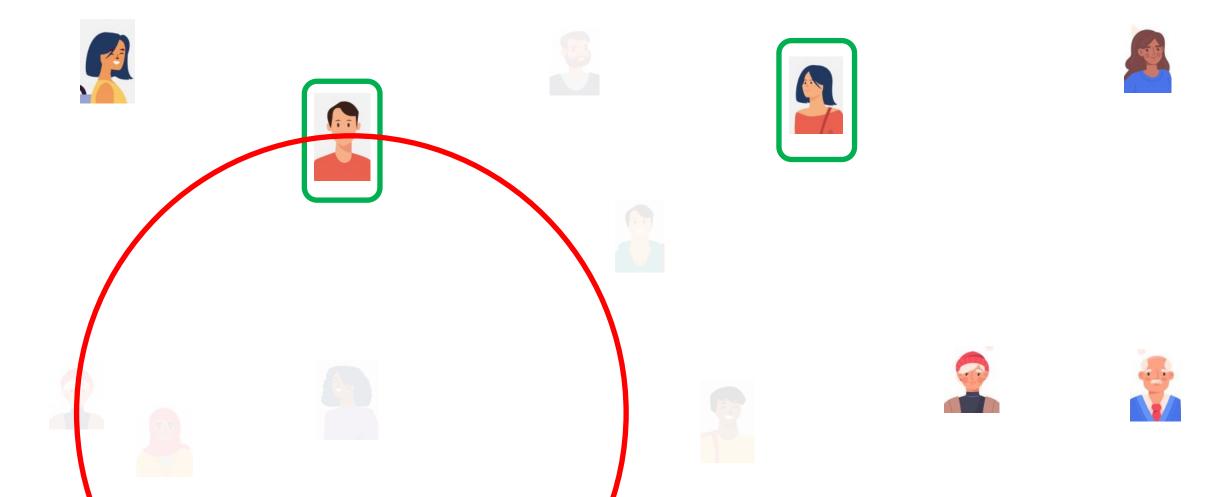
- Ebadian & Micha (2023)
- Variant of the greedy capture algorithm of Chen, Fain, Lyu, & Munagala (2019)
- Repeat k times:
  - Start growing balls centered at each agent, until some ball covers n/k new agents
  - Pick uniformly at random one agent from the n/k new ones covered and put her in the panel

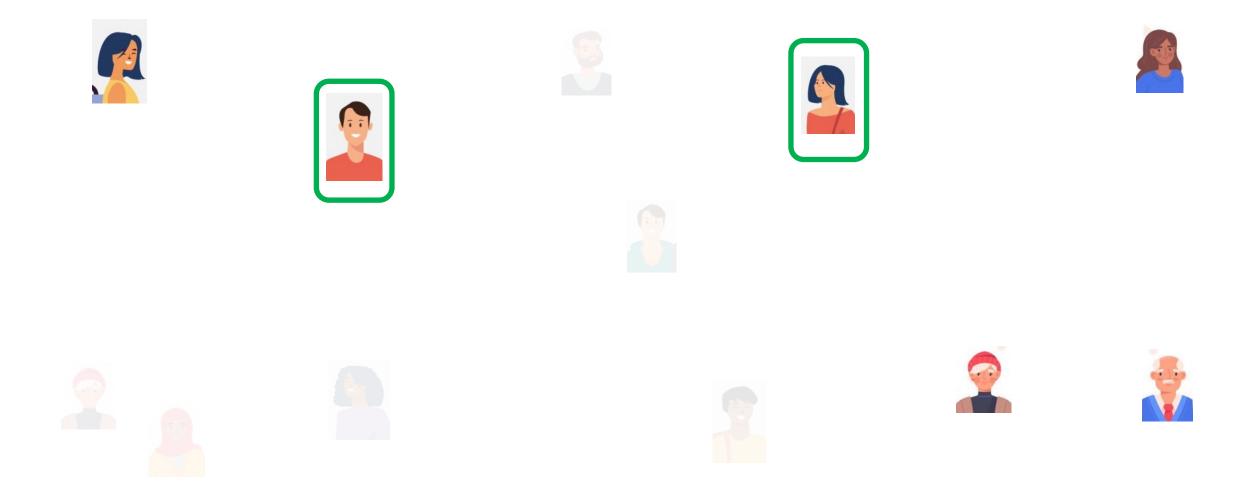


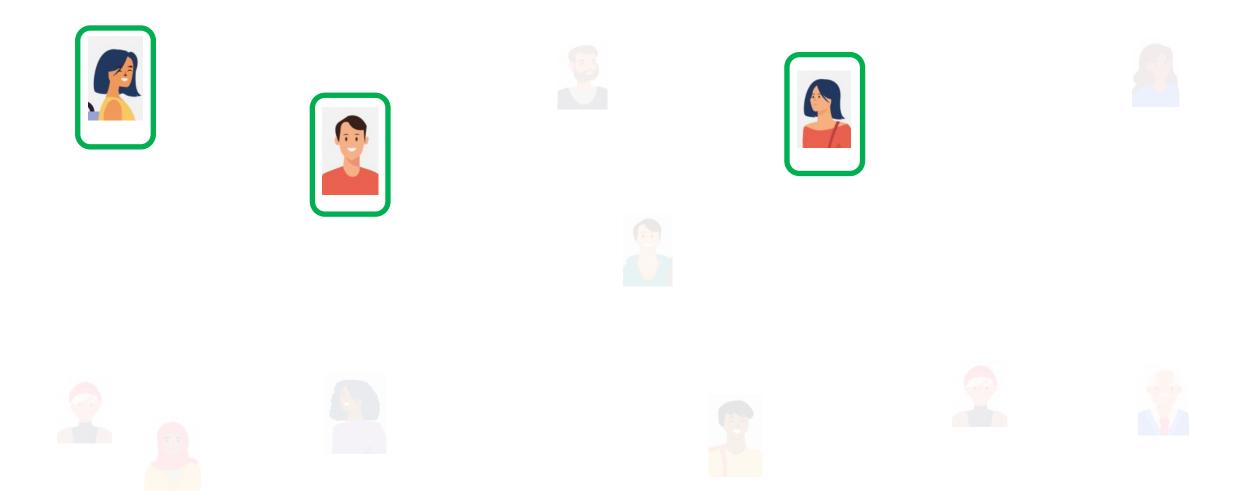












## Fair greedy capture

- Fair greedy capture is fair
- Theorem: For  $k = O(\varepsilon^{-3} \ln m)$ , fair greedy capture has **ex ante metric distortion 1 +**  $\varepsilon$  **and constant ex post distortion** for every set of malternatives
- Drawback: our current bound on ex post distortion is large (127)

## End of the second story

- More results:
  - For small panels, **deterministic selection algorithms** cannot have (ex post) distortion better than 5
  - In contrast, fair selection algorithms have ex ante distortion at most 3
  - The panel size of  $k = \Omega(\varepsilon^{-2} \ln m)$  is **optimal** for ex ante distortion  $1 + \varepsilon$
- Open problems
  - **Better ex post distortion bounds** for fair greedy capture?
  - Improving the **dependency of the panel size on** *E*?

