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Two stories…

• Based on recent work on the distortion of
• impartial culture electorates (with Karl Fehrs)
• sortition (with Evi Micha and Jannik Peters)



The distortion of impartial culture electorates



Voting

• Voters (agents)

• Candidates (alternatives)
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Voting rules

• Agents submit rankings of alternatives
• A voting rule takes such a profile of rankings and selects a winnning 

alternative
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Formal definitions

• Set of 𝑛 agents 𝑁, set of 𝑚 alternatives 𝐴
• Agent 𝑖 ∈ 𝑁 has non-negative valuation 𝑣!(𝑎) for each alternative 𝑎 ∈ 𝐴
• Valuation profile 𝑣 (valuations of all agents for all alternatives)
• The ranking ≻!  of agent 𝑖 ∈ 𝑁 is consistent to her valuations, i.e., 
𝑎 ≻! 𝑏 implies that 𝑣!(𝑎) ≥ 𝑣!(𝑏).
• Ranking profile 𝑃 = ≻", ≻#, … , ≻$ . Overall, 𝑃 ↦ 𝑣
• The social welfare 𝑆𝑊(𝑎, 𝑣) of alternative 𝑎 ∈ 𝐴 in valuation profile 𝑣 is 

its total valuation, i.e., 𝑆𝑊 𝑎, 𝑣 = ∑!∈& 𝑣!(𝑎)
• Optimal alternative is the one that maximizes the social welfare
• Optimal social welfare 𝑆𝑊∗(𝑣) = max

(∈)
𝑆𝑊(𝑎, 𝑣)



Formal definitions (contd.)

• Voting rule: a function 𝑓 that takes as input a ranking profile 𝑃	and 
returns an alternative 𝑎 ∈ 𝐴
• The distortion 𝑑𝑖𝑠𝑡 𝑓 	of a voting rule 𝑓 is defined as

𝑑𝑖𝑠𝑡 𝑓 = max
*
max
+↦*

𝑆𝑊∗(𝑣)	
𝑆𝑊(𝑓 𝑃 , 𝑣)

maximum over 
all valuation 

profiles maximum over 
all consistent 

ranking profiles

how far from optimal is 
the social welfare of the 
alternative returned by 

the voting rule?



Formal definitions (contd.)

• Voting rule: a function 𝑓 that takes as input a ranking profile 𝑃	and 
returns an alternative 𝑎 ∈ 𝐴
• The distortion 𝑑𝑖𝑠𝑡 𝑓 	of a voting rule 𝑓 is defined as

𝑑𝑖𝑠𝑡 𝑓 = max
*
max
+↦*

𝑆𝑊∗(𝑣)	
𝑆𝑊(𝑓 𝑃 , 𝑣)

• Procaccia & Rosenschein (2006)
• Boutilier, C., Haber, Lu, Procaccia, & Sheffet (2015)
• Ebadian, Kahng, Peters, & Shah (2024)
• Anshelevich, Filos-Ratsikas, Shah, & Voudouris (2021)



Flavor of distortion results

• Plurality has distortion 𝑂(𝑚#), which is optimal among deterministic 
voting rules
• The best possible distortion among all (possible randomized) voting 

rules is Θ( 𝑚)
• Restrictions: unit range, unit sum valuations
• Without such restrictions, no distortion bound is possible for 

deterministic rules, and the trivial randomized rule that returns an 
alternative uniformly at random has best possible distortion



Low-distortion using value queries 

• The idea: in addition to the ranking profile, the voting rule (mechanism) 
can make a small number of value queries to each agent
• The query to agent 𝑖 for alternative 𝑎 returns the value 𝑣!(𝑎)

• Query: Agent      , what is your value for alternative          ? Answer: 0.20

• Amanatidis, Birmpas, Filos-Ratsikas, & Voudouris (2021)
• Main result: Constant distortion with 𝑂(ln#𝑚) queries per agent
• Feature: no restrictions on the valuations



The distortion of impartial culture profiles

• C. & Fehrs (2024)
• A common probability distribution 𝐹
• Independently for each agent-alternative pair, agent 𝑖 ∈ 𝑁 draws a 

random value 𝑣!(𝑎) for alternative 𝑎 ∈ 𝐴 according to p.d. 𝐹
• The consistent profile 𝑃(𝑣) is obtained from 𝑣 by breaking ties among 

alternatives uniformly at random
• The average distortion of a voting rule/mechanism 𝑓 on ranking profiles 

that are consistent to random values drawn from p.d. 𝐹

𝑎𝑣𝑑 𝑓, 𝐹 =
𝔼*~.[𝑆𝑊∗ 𝑣 ]

𝔼*~.[𝑆𝑊 𝑓 𝑃(𝑣), 𝑣 , 𝑣 ]
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Binary distributions

• The p.d. 𝐹 returns 1 with probability 𝑝 and 0 otherwise
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Consistent ranking profile, breaking ties 
u.a.r.



Average distortion can be high

• Consider a binary distribution with 𝑝 = "
$/

• The numerator in the average distortion definition is a constant
• W.h.p., there are very few 1s in the top positions of the rankings
• Without making queries, the voting rule cannot guess which among 

the top alternatives have these 1s
• Then, the alternative returned will have some 1 in the top position with 

probability at most 𝑂(1/𝑚) 
• Yields an average distortion of Ω 𝑚 , i.e., as bad as picking a fixed or a 

random alternative



Mechanisms for binary distribution

• 𝐹 (i.e., 𝑝) is known to the mechanism
• Assume that we query the value of agent        for alternative



Mechanisms for binary distribution

• 𝐹 (i.e., 𝑝) is known to the mechanism
• Assume that we query the value of agent        for alternative

• If the value returned is 1, all alternatives ranked above          have value 1
1 1 1



Mechanisms for binary distribution

• 𝐹 (i.e., 𝑝) is known to the mechanism
• Assume that we query the value of agent        for alternative

• If the value returned is 1, all alternatives ranked above          have value 1
• Otherwise, all alternatives ranked below          have value 0

0 0 0
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Mechanisms for binary distribution

• One query per agent (e.g., at the second position)
• Implied social welfare of alternative 𝑎 = number of agents who 
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Mechanisms for binary distribution

• One query per agent (e.g., at the second position)
• Implied social welfare of alternative 𝑎 = number of agents who 

returned 1 to the query and rank 𝑎 at the queried position or above
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Mechanism Mean

• Input: a profile 𝑃 consistent to random agent-alternative 
values drawn from a binary p.d. 𝐹 with known 𝑝
•Query each agent at position max{1, 𝑝𝑚 }
• Return the alternative with highest implied social welfare

• Theorem: Mechanism Mean has constant average distortion
• Analysis distinguishes between cases for small, medium, and large 𝑝 



The random threshold mechanism RTMean

• Input: a profile 𝑃 with underlying valuations drawn from a p.d. 𝐹
• Uses 𝑘 thresholds parameters ℓ" < ℓ# < ⋯ < ℓ0
• Select an integer 𝑡	uniformly at random from [𝑘] 
• Sets 𝑝	 = 	Pr1∼. 𝑧	 ≥ ℓ3
• Simulate an execution of MEAN on the binary distribution 𝐹4 by
• making the same value queries as MEAN for 𝐹4, but
• interpreting the values returned to each query as 1 if above ℓ3  and 0 

otherwise
• Return as output the alternative that MEAN selects



The random threshold mechanism RTMean

• Theorem: For every p.d. 𝐹 with expectation 𝜇 and variance 𝜎#, there are 
thresholds ℓ" < ℓ# < ⋯ < ℓ0  so that the average distortion of 
mechanism RTMean is at most 𝑂 ln𝑚 + ln 5

!

6!

• Note: mechanism RTMean makes exactly one query



End of the first story

• Improved results for worst-case distortion
• Randomized mechanisms with worst-case distortion 𝑂(ln𝑚)	using 
𝑂(ln𝑚) queries per agent
• Lower bound on Ω(ln𝑚) the number of queries necessary for 

constant worst-case distortion 

• Open problems
• Is there a mechanism that achieves constant distortion for every 

p.d. 𝐹 using a constant number of queries per agent?
• What about unknown p.d. 𝐹?
• Tight bound on #queries for constant worst-case distortion?



The metric distortion of sortition



Sortition

• The practice of selecting a citizen’s assembly (or panel) to decide 
among alternatives for a given issue
• Desired property: fairness in the selection of citizens so that different 

groups are represented proportionally 

• Flanigan, Gölz, Gupta, Hennig, & Procaccia (2021)
• Meir, Sandomirskiy, and Tennenholtz (2021)
• Ebadian, Kehne, Micha, Procaccia, & Shah (2022)
• Ebadian & Micha (2023)



Sortition

• The practice of selecting a citizen’s assembly (or panel) to decide 
among alternatives for a given issue
• Our focus: efficiency of decisions under fairness constraints in the 

selection of the panel 
• Tool: a variant of distortion

• C., Micha, & Peters (2024)



Our setting

• Citizens (or agents) and alternatives are points in a metric space
• Panels are subsets of agents of size 𝑘
• The social cost 𝑆𝐶(𝑎, 𝑃) of alternative 𝑎 for a panel 𝑃 is defined as the 

total distance of the alternative to all members of 𝑃, i.e., 
𝑆𝐶 𝑎, 𝑃 = ∑!∈+ 𝑑(𝑖, 𝑎) 

• We denote by 𝑆𝐶(𝑎) the social cost of alternative 𝑎 (for all agents) 
• The optimal alternative is the one with the minimum social cost 

𝑆𝐶∗(𝐴) = min
(∈)

𝑆𝐶(𝑎)

• Among a set of alternatives 𝐴 for a given issue, the panel 𝑃 selects the 
alternative 𝑃(𝐴) of minimum social cost for it
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Metric distortion

• Let 𝐹 be a randomized panel selection algorithm (i.e., a probability 
distribution)
• The ex ante metric distortion of 𝐹 for the set of 𝑚 alternatives 𝐴 is

𝑒𝑎𝑑𝑖𝑠𝑡 𝐹 =
𝔼+∼. 𝑆𝐶(𝑃(𝐴))

𝑆𝐶∗(𝐴)
• The ex post metric distortion of 𝐹 for the set of 𝑚 alternatives 𝐴 is 

𝑑𝑖𝑠𝑡 𝐹 =
max
+∼.

𝑆𝐶(𝑃(𝐴))

𝑆𝐶∗(𝐴)



Fair selection algorithms

• Fairness criterion: the probability that a given agent is selected in the 
panel is 𝑘/𝑛
• E.g., the algorithm that selects uniformly at random among all panels
• Theorem: The algorithm that selects uniformly at random among all 

panels of size 𝑘 = 𝑂(𝜀7# ln𝑚) has ex ante metric distortion 1 + 𝜀 for 
every set of 𝑚 alternatives
• Proof uses Azuma’s inequality to handle minor correlations
• Drawback: ex post distortion can be very high



Fair greedy capture

• Ebadian & Micha (2023)
• Variant of the greedy capture algorithm of Chen, Fain, Lyu, & Munagala 

(2019)

• Repeat 𝑘 times:
• Start growing balls centered at each agent, until some ball covers 
𝑛/𝑘 new agents
• Pick uniformly at random one agent from the 𝑛/𝑘 new ones covered 

and put her in the panel 



Fair greedy capture: an example (𝑛 = 12, 𝑘 = 3)
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Fair greedy capture

• Fair greedy capture is fair
• Theorem: For 𝑘 = 𝑂 𝜀78 ln𝑚 , fair greedy capture has ex ante metric 

distortion 𝟏 + 𝜺 and constant ex post distortion for every set of 𝑚 
alternatives
• Drawback: our current bound on ex post distortion is large (127)



End of the second story

• More results:
• For small panels, deterministic selection algorithms cannot 

have (ex post) distortion better than 5
• In contrast, fair selection algorithms have ex ante distortion at 

most 3
• The panel size of 𝑘 = Ω(𝜀7# ln𝑚) is optimal for ex ante distortion 
1 + 𝜀

• Open problems
• Better ex post distortion bounds for fair greedy capture?
• Improving the dependency of the panel size on 𝜺?



Thank you!


