Constant Inapproximability for Fisher Markets

July 3, 2024

Archimedes Workshop on the Foundations of Modern Al

Accepted at ACM EC 2024

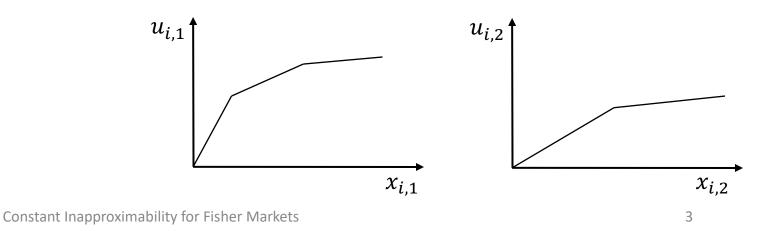
Argyrios Deligkas John Fearnley Alexandros Hollender Themistoklis Melissourgos

Fisher Markets

- Set of divisible goods G, one unit of each good
- Set of buyers B
- **>** Buyer $i \in B$ has budget e_i
- ➤ Each buyer *i* has a utility function $u_i: R_{\geq 0}^{|G|} \to R_{\geq 0}$
- ➤ Under allocation x_i ∈ R^{|G|}_{≥0} for buyer i, where x_{i,j} ≥ 0 is the allocation of good j, u_i(x_i) denotes the utility of the buyer

SPLC utilities

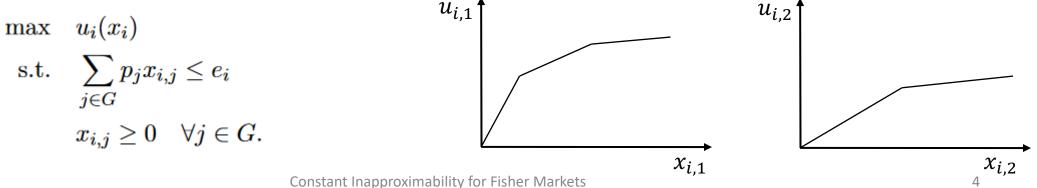
- Additive Separable Piecewise Linear Concave
- - $u_{i,j}(0) = 0$
 - $u_{i,j}$ is continuous and piecewise-linear
 - $u_{i,j}$ is concave but non-decreasing



Fisher Markets

- Set of divisible goods G, one unit of each good
- Set of buyers B
- **>** Buyer $i \in B$ has budget e_i
- > Each buyer *i* has an SPLC utility function $u_i: R_{\geq 0}^{|G|} \to R_{\geq 0}$

Siven price vector $p \in R_{\geq 0}^{|G|}$, $OPT_i(p) \subseteq R_{\geq 0}^{|G|}$ is the set of optimal bundles for buyer *i*



Competitive Equilibria

- For every $\varepsilon \ge 0$, an ε approximate market equilibrium is a price vector p and allocation vector $x = (x_i)_{i \in B}$ s.t.
 - **1.** Every buyer buys an optimal bundle, i.e., $x_i \in OPT_i(p)$
 - 2. For every good *j*, the market approximately clears up to ε units, i.e., $\left| \sum_{i \in B} x_{i,j} 1 \right| \le \varepsilon$

Competitive Equilibria

- For every $\varepsilon \ge 0$, an ε approximate market equilibrium is a price vector p and allocation vector $x = (x_i)_{i \in B}$ s.t.
 - 1. Every buyer buys an optimal bundle
 - 2. For every good j, the market ε clears

Sufficient Condition: For every buyer *i* there is a good *j* s.t. $u_{i,j}$ is a strictly increasing function, i.e. the buyer is **not satiated**

Every Fisher market that satisfies the sufficient condition possesses at least one market equilibrium

Complexity of Market Equilibria

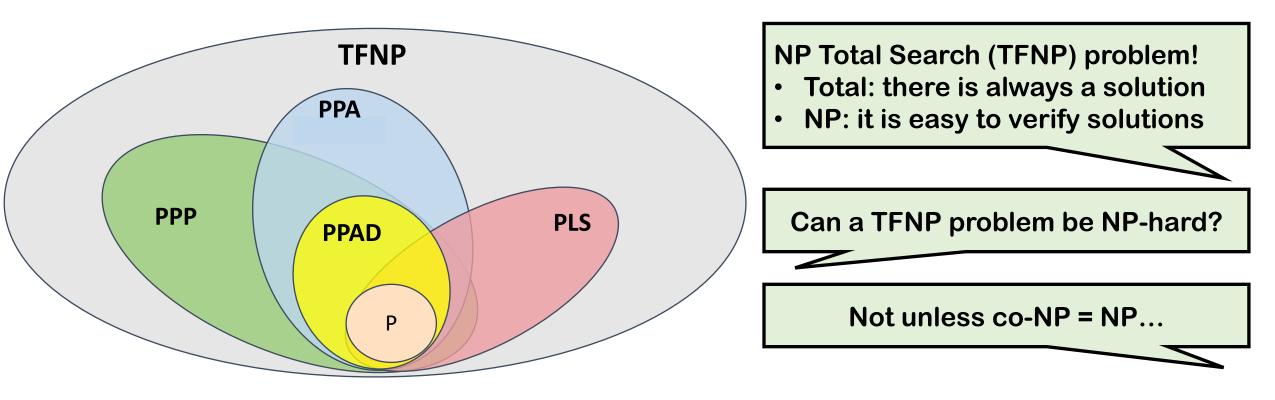
Every Fisher market that satisfies the sufficient condition possesses at least one ε - approximate market equilibrium

Input: A Fisher market with SPLC utility functions that satisfy the sufficient condition.

Task: Compute an ε - approximate market equilibrium

Complexity of Market Equilibria

Every Fisher market that satisfies the sufficient condition possesses at least one ε - approximate market equilibrium



Related work

• PPAD-hardness for inverse polynomial ε

(Vazirani and Yannakakis, Chen and Teng)

Polynomial time algorithms

- Linear Utilities (Devanur et al, Orlin, Vegh)
- Homogeneous (Eisenberg)
- Weak gross substitutes (Codenotti et al)
- Constant number of agents or goods (Devanur and Kannan)
- Fixed parameter approximation scheme wrt buyers (Garg et al)

More Related work

- Matching Markets
 - Constant number of buyers or goods (Alaei et al)
 - Dichotomous utilities (Vazirani and Yannakakis)
 - > Hylland-Zeckhauser markets (Hylland and Zeckhauser, Braverman, Chen et al.)

Fisher markets with constraints

- Utilities depend on spending constraints (Birnbaum et al., Devanur, Vazirani)
- Linear constraints (Jalota et al.)

Even More Related work

- Arrow-Debreu exchange
 - > PPAD-hardness:

1/poly (Chen et al) constant, yet uspecified, ε (Rubinstein)

Polynomial time algorithms
Linear utilities (Duan and Melhorn, Duan et al., Garg and Vegh, Jain, Ye)
Weak gross substitutes (Bei et al, Codenotti et al., Garg et al.)

Our results

It is PPAD-complete to compute an ε - approximate market equilibrium in Fisher markets with SPLC utilities, for any constant $\varepsilon < 1/11$.

It is PPAD-complete to compute an ε - approximate market equilibrium in Arrow-Debreu exchange markets with SPLC utilities, for any constant $\varepsilon < 1/11$.

Reduction from Pure-Circuit problem

The Pure-Circuit Problem

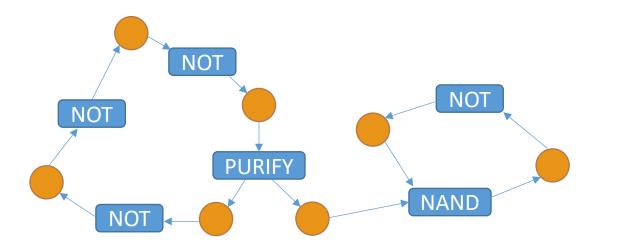
Input: A Boolean circuit where

- 1. The circuit can have cycles
- 2. Variables take values in $\{0, 1, \bot\}$ instead of just $\{0, 1\}$
- 3. In addition to the standard logical gates (NOT, OR, AND), the circuit can also have "PURIFY" gates

Goal: Assign a value (in $\{0, 1, \bot\}$), such that all gates are "satisfied"

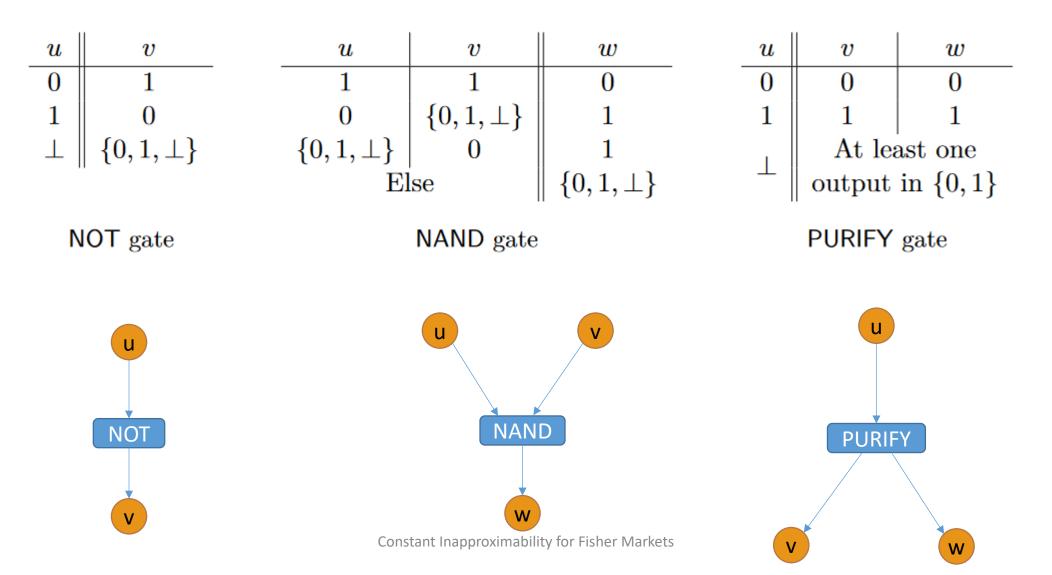
The Pure-Circuit Problem

Goal: Assign a value (in $\{0, 1, \bot\}$), such that all gates are "satisfied"



Theorem (DFHM): Pure-Circuit is PPAD-complete even if the circuit has gates in {NOT, NAND, PURIFY}

Goal: Assign a value (in $\{0, 1, \bot\}$), such that all gates are "satisfied"



15

Our results

It is PPAD-complete to compute an ε - approximate market equilibrium in Fisher markets with SPLC utilities, for any constant $\varepsilon < 1/11$.

It is PPAD-complete to compute an ε - approximate market equilibrium in Arrow-Debreu exchange markets with SPLC utilities, for any constant $\varepsilon < 1/11$.

Reduction from Pure-Circuit problem

High-level idea of our reduction

Given: An instance of Pure-Circuit

Goal: Construct a Fisher market

Idea: Create one good for each variable in the Pure-Circuit instance plus a **"reference**" good.

Buyers (and auxiliary buyers) will help us to implement the gates

Interpretation:

- If a good has "low" price
- If a good has "high" price
- Otherwise

- \rightarrow variable value = 0
- \rightarrow variable value = 1
- \rightarrow variable value = \perp

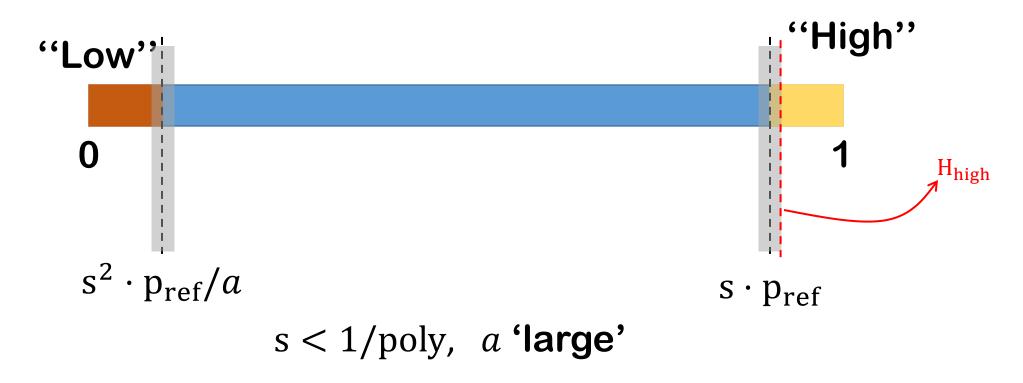
Overview: Reference good ref

- > In every equilibrium it has price $p_{\rm ref}$ close to 1
- We ensure this via a reference buyer

$$u_{b_{\mathrm{ref}},j}(x) = \begin{cases} x & \text{if } j = \mathrm{ref}, \\ 0 & \text{otherwise.} \end{cases}$$

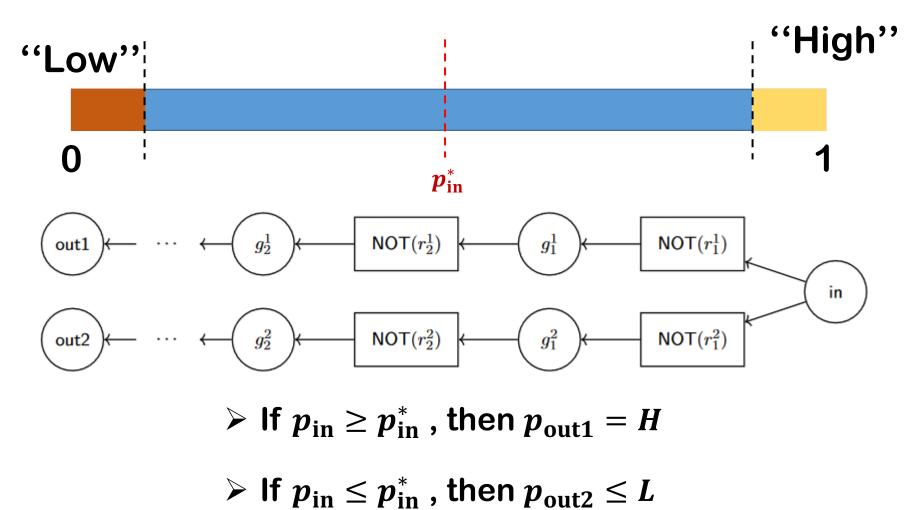
Every other buyer wants the reference good, but we ensure that the demand from them is significantly smaller than 1

Overview: Variable encodings



\succ In every equilibrium it has price $p_{\rm ref}$ close to 1

Overview: PURIFY gates



Conclusions

- > First constant inapproximability for Fisher markets
- Use Pure-Circuit to prove constant inapproximability for Hylland-Zeckhauser?
- > Can we improve ε ?
- > Upper bounds?

