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Fisher Markets

Ø Set of  divisible goods G, one unit of  each good
Ø Set of  buyers 𝑩
Ø Buyer 𝒊 ∈ 𝑩 has budget 𝐞𝒊
Ø Each buyer 𝒊 has a utility function 𝒖𝒊: 𝑹"𝟎

𝑮 → 𝑹"𝟎
Ø Under allocation 𝒙𝒊 ∈ 𝑹"𝟎

𝑮 for buyer 𝑖, where 
𝒙𝒊,𝒋 ≥ 𝟎 is the allocation of  good 𝒋, 𝒖𝒊(𝒙𝒊)
denotes the utility of  the buyer
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SPLC utilities

Ø Additive Separable Piecewise Linear Concave

Ø 𝒖𝒊 𝒙𝒊 = ∑𝒋∈𝑮𝒖𝒊,𝒋 𝒙𝒊,𝒋 where 𝒖𝒊,𝒋: 𝑹"𝟎 → 𝑹"𝟎 satisfies 

• 𝒖𝒊,𝒋 𝟎 = 𝟎
• 𝒖𝒊,𝒋 is continuous and piecewise-linear

• 𝒖𝒊,𝒋 is concave but non-decreasing
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Fisher Markets
Ø Set of  divisible goods G, one unit of  each good
Ø Set of  buyers 𝑩
Ø Buyer 𝒊 ∈ 𝑩 has budget 𝐞𝒊
Ø Each buyer 𝑖 has an SPLC utility function 𝒖𝒊: 𝑹"𝟎

𝑮 → 𝑹"𝟎
Ø Given price vector 𝒑 ∈ 𝑹"𝟎

𝑮 , 

𝑶𝑷𝑻𝒊 𝒑 ⊆ 𝑹"𝟎
𝑮 is the set of  optimal bundles for buyer 𝒊
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Competitive Equilibria

Ø For every 𝜺 ≥ 𝟎 , an 𝜺 - approximate market equilibrium 
is a price vector 𝒑 and allocation vector 𝒙 = (𝒙𝒊)𝒊∈𝑩 s.t.
1. Every buyer buys an optimal bundle, i.e., 𝒙𝒊 ∈ 𝑶𝑷𝑻𝒊(𝒑)
2. For every good 𝒋, the market approximately clears up 

to 𝜺 units, i.e., 8
𝒊∈𝑩

𝒙𝒊,𝒋 − 𝟏 ≤ 𝜺
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Competitive Equilibria

Ø For every 𝜺 ≥ 𝟎 , an 𝜺 - approximate market equilibrium 
is a price vector 𝒑 and allocation vector 𝒙 = (𝒙𝒊)𝒊∈𝑩 s.t.
1. Every buyer buys an optimal bundle
2. For every good 𝒋, the market 𝜺 - clears

Sufficient Condition: For every buyer 𝒊 there is a good 𝒋 s.t. 𝒖𝒊,𝒋
is a strictly increasing function, i.e. the buyer is not satiated
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Every Fisher market that satisfies the sufficient condition 
possesses at least one market equilibrium



Complexity of  Market Equilibria

Input: A Fisher market with SPLC utility functions that 
satisfy the sufficient condition. 

Task: Compute an 𝜺 - approximate market equilibrium
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Every Fisher market that satisfies the sufficient condition 
possesses at least one 𝜺 - approximate market equilibrium



NP Total Search (TFNP) problem!
• Total: there is always a solution
• NP: it is easy to verify solutions

Can a TFNP problem be NP-hard?

Not unless co-NP = NP…

TFNP

PPP

PPA

PLSPPAD

P
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Complexity of  Market Equilibria
Every Fisher market that satisfies the sufficient condition 
possesses at least one 𝜺 - approximate market equilibrium



Related work

§ PPAD-hardness for inverse polynomial 𝜺
(Vazirani and Yannakakis, Chen and Teng)

§ Polynomial time algorithms
Ø Linear Utilities (Devanur et al, Orlin, Vegh)

Ø Homogeneous (Eisenberg)

Ø Weak gross substitutes (Codenotti et al)

Ø Constant number of  agents or goods (Devanur and Kannan)

Ø Fixed parameter approximation scheme wrt buyers (Garg et al)
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More Related work

§ Matching Markets
Ø Constant number of  buyers or goods (Alaei et al)

Ø Dichotomous utilities (Vazirani and Yannakakis)

Ø Hylland-Zeckhauser markets (Hylland and Zeckhauser, Braverman, Chen et al.)

§ Fisher markets with constraints
Ø Utilities depend on spending constraints (Birnbaum et al., Devanur, Vazirani)

Ø Linear constraints (Jalota et al.)
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Even More Related work

§ Arrow-Debreu exchange 
Ø PPAD-hardness: 

1/poly (Chen et al) 

constant, yet uspecified, 𝜺 (Rubinstein) 

Ø Polynomial time algorithms
Linear utilities (Duan and Melhorn, Duan et al., Garg and Vegh, Jain, Ye)

Weak gross substitutes (Bei et al, Codenotti et al., Garg et al.)
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Our results

Reduction from Pure-Circuit problem
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It is PPAD-complete to compute an 𝜺 - approximate market 
equilibrium in Arrow-Debreu exchange markets with SPLC 
utilities, for any constant 𝜺 < 𝟏/𝟏𝟏. 

It is PPAD-complete to compute an 𝜺 - approximate market 
equilibrium in Fisher markets with SPLC utilities, for any 
constant 𝜺 < 𝟏/𝟏𝟏. 



The Pure-Circuit Problem
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Input: A Boolean circuit where
1. The circuit can have cycles
2. Variables take values in {𝟎, 𝟏, ⊥} instead of  just {𝟎, 𝟏}
3. In addition to the standard logical gates (NOT, OR, AND),

the circuit can also have “PURIFY” gates

Goal: Assign a value (in {𝟎, 𝟏, ⊥}), such that all gates are “satisfied”



The Pure-Circuit Problem

PURIFY

NOT
NAND

NOT

NOT
NOT

Theorem (DFHM):
Pure-Circuit is PPAD-complete
even if  the circuit has gates in
{NOT, NAND, PURIFY}

Goal: Assign a value (in {𝟎, 𝟏, ⊥}), such that all gates are “satisfied”
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Goal: Assign a value (in {𝟎, 𝟏, ⊥}), such that all gates are “satisfied”
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Our results

Reduction from Pure-Circuit problem
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It is PPAD-complete to compute an 𝜺 - approximate market 
equilibrium in Arrow-Debreu exchange markets with SPLC 
utilities, for any constant 𝜺 < 𝟏/𝟏𝟏. 

It is PPAD-complete to compute an 𝜺 - approximate market 
equilibrium in Fisher markets with SPLC utilities, for any 
constant 𝜺 < 𝟏/𝟏𝟏. 



High-level idea of  our reduction
Given: An instance of  Pure-Circuit

Goal: Construct a Fisher market

Idea: Create one good for each variable in the Pure-Circuit instance 
plus a ‘‘reference’’ good.

Buyers (and auxiliary buyers) will help us to implement the gates

Interpretation:

• If  a good has ‘‘low’’ price → variable value = 0

• If  a good has ‘‘high’’ price → variable value = 1

• Otherwise → variable value = ⊥
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Overview: Reference good ref

Ø In every equilibrium it has price 𝒑𝐫𝐞𝐟 close to 1

Ø We ensure this via a reference buyer

Ø Every other buyer wants the reference good, 
but we ensure that the demand from them is 
significantly smaller than 1
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Overview: Variable encodings

Ø In every equilibrium it has price 𝒑𝐫𝐞𝐟 close to 1
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‘‘Low’’ ‘‘High’’ 

0 1

s ⋅ p)*+s, ⋅ p)*+/𝑎
s < 1/poly, 𝑎 ‘large’  

H%&'%



Overview: PURIFY gates
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‘‘Low’’ ‘‘High’’ 

0 1𝒑𝐢𝐧∗

Ø If  𝒑𝐢𝐧 ≥ 𝒑𝐢𝐧∗ , then 𝒑𝐨𝐮𝐭𝟏 = 𝑯

Ø If  𝒑𝐢𝐧 ≤ 𝒑𝐢𝐧∗ , then 𝒑𝐨𝐮𝐭𝟐 ≤ 𝑳



Conclusions

Ø First constant inapproximability for Fisher markets

Ø Use Pure-Circuit to prove constant inapproximability
for Hylland-Zeckhauser?

Ø Can we improve 𝜺? 

Ø Upper bounds?
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Thank you! Questions?


