
Perspectives on learning in games
Tutorial — Part I

Gabriele Farina
MIT

 gfarina@mit.edu

Athens    •    3 July 2024

mailto:gfarina@mit.edu


💡 Learning in games

Constructive answer to the following natural question:

“Can a player that repeatedly plays a game follow rules to refine their strategy
after each match, so as to guarantee mastering the game in the long run?”



Today, learning-based techniques are typically the fastest way to compute high-
quality solutions for large strategic interactions



💡 Local ⟷ global

There exist deep connections between learning and equilibrium. Remarkable:

Learning: dynamic and local (per-player) concept

↕
Equilibrium: static and global (all players) concept

Global equilibrium emerges from local, decentralized dynamics



Goals of this tutorial

• Pull together several recent results under a unified point of view that is
approachable for newcomers

• Touch on several directions: algorithms, domains, connections between notions,
recent trends such as last-iterate convergence and optimistic dynamics
‣ I hope this will be useful also for non-newcomers

• Ultimately, some choices had to be made: for example, we will only focus on
discrete dynamics

• Part I focuses mostly on nonsequential, matrix games (normal-form games)

• Part II will look at more complicated settings: combinatorial domains and
imperfect-information sequential (extensive-form) games



Regret and hindsight rationality



What does it mean to learn in games?

• Philosophical question
• A powerful definition for what “learning in games” means is through the concept

of hindsight rationality

💡 Hindsight rationality

If every single time the player played a certain strategy 𝒙, it would have been strictly
better to play a different strategy 𝒙′ instead, can we really say that the player has

“learnt” how to play…?



Formalizing hindsight rationality

• To fix ideas, let’s look at the case of normal-form games (all the ideas transfer to
more general settings)

• Normal-form games are games like rock-paper-
scissors:
‣ players choose their strategies simultaneously
‣ only one action is selected and the game ends
‣ given a choice of actions (𝑎𝑖)𝑖=1,…,𝑛 for each

player 𝑖, the payoff for each player 𝑗 is given by 
𝑢𝑗(𝑎1, …, 𝑎𝑛)

✊🏽 ✋🏽 ✌🏽

✊🏽 0 −1 +1

✋🏽 +1 0 −1

✌🏽 −1 +1 0



Formalizing hindsight rationality

• At time 𝑡, every player 𝑖 plays according to some strategy 𝒙(𝑡)
𝑖 ∈ 𝒳𝑖. For rock-

paper-scissors, the set of strategies would be the set of all probability
distributions over the three actions (✊🏽, ✋🏽, ✌🏽).
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𝑖 ∈ 𝒳𝑖. For rock-

paper-scissors, the set of strategies would be the set of all probability
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• Given the strategies played by the other players, player 𝑖’s expected utility is a
linear function of their own strategy: 𝑢(𝑡)

𝑖 (𝒙(𝑡)) = ⟨𝒖(𝑡), 𝒙(𝑡)⟩.

• Idea of hindsight rationality: Player 𝑖 “learnt” to play the game when looking back
at the history of play, they cannot think of any transformation 𝜑 : 𝒳𝑖 → 𝒳𝑖 of
their strategies that when applied at the whole history of play would have given
strictly better utility



Input/output model

• We assume that each player observes their utility gradient 𝒖(𝑡) as feedback (full
information feedback)
‣ This can be relaxed to only observing the actual value of the strategy (bandit

feedback)
‣ Algorithms for bandit feedback typically reduce to the full information case

internally by supplying an estimator

• We also assume it’s totally fine to output distributions over actions (points in the
simplex) instead of specific actions
‣ One can always sample one and use concentration arguments to cover the

latter case

• The more pressing question is: what transformations 𝜑 are worth considering?



Hindsight rationality

Let:
• 𝒳 be the set of strategies of the player; and
• Φ be a set of transformations 𝜑 : 𝒳 → 𝒳.

The Φ-regret cumulated up to time 𝑇  is given by

Φ Reg(𝑇 ) ≔ max
𝜑∈Φ

{∑
𝑇

𝑡=1
⟨𝒖(𝑡), 𝜑(𝒙(𝑡))⟩ − ⟨𝒖(𝑡), 𝒙(𝑡)⟩}

 

Goal: regret “minimization”

Have Φ Reg(𝑇 ) grow sublinearly in 𝑇 , no matter what all the other players do. Even
more generally, sublinear growth no matter the sequence of utility gradients 𝒖(𝑡)



Some notable choices for the set of transformations Φ



External regret

External regret: Φ = all constant functions

𝜑𝒙̂ : 𝒙 ↦ 𝒙̂ ∀𝒙 ∈ 𝒳

• Easiest notion: ensure we don’t wish we could throw away everything we’ve
played thus far and stick to a single strategy all the times

• So important that it is often called just regret
• The definition of Φ-regret in this case simplifies into simply

Reg(𝑇 ) ≔ max
𝒙̂∈𝒳

{∑
𝑇

𝑡=1
⟨𝒖(𝑡), 𝒙̂⟩ − ⟨𝒖(𝑡), 𝒙(𝑡)⟩}.



External regret

External regret: Φ = all constant functions

⚠ Warning: (external) regret can be negative!

This is because we are trading hindsight with the restriction of always using the
same best action



External regret

External regret: Φ = all constant functions

• In NFGs we can guarantee 𝑂(log|𝐴|
√

𝑇) external regret

• In convex strategy sets 𝒳 ⊆ ℝ𝑑 , we can generally guarantee 𝑂(poly(𝑑) 
√

𝑇)
external regret

• Connected to coarse correlated equilibria in NFGs and EFGs
‣ Special case: Nash eq. in 2-player 0-sum
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√

𝑇) linear swap regret, where |𝐸| is the
number of edges in the (possibly imperfect-information) game tree [FP24]

• Connected to correlated equilibria in NFGs, extensive-form correlated equilibria
in EFGs



Linear swap regret

Linear swap regret: Φ = all linear functions 𝒙 ↦ 𝐌𝒙

• In NFGs we can guarantee 𝑂(poly(|𝐴|)
√

𝑇) linear swap regret

• In EFGs we can guarantee 𝑂(poly(|𝐸|)
√

𝑇) linear swap regret, where |𝐸| is the
number of edges in the (possibly imperfect-information) game tree [FP24]

• Connected to correlated equilibria in NFGs, extensive-form correlated equilibria
in EFGs



Linear swap regret

Linear swap regret: Φ = all linear functions 𝒙 ↦ 𝐌𝒙

• In NFGs we can guarantee 𝑂(poly(|𝐴|)
√

𝑇) linear swap regret

• In EFGs we can guarantee 𝑂(poly(|𝐸|)
√

𝑇) linear swap regret, where |𝐸| is the
number of edges in the (possibly imperfect-information) game tree [FP24]

• Connected to correlated equilibria in NFGs, extensive-form correlated equilibria
in EFGs



More specific transformations Φ

The connection with correlated equilibria in NFGs is not a coincidence:

👉🏽 On a probability simplex Δ(𝐴), linear swap transformations in particular
include all probability mass transport 𝜑𝑎→𝑏 (for 𝑎, 𝑏 ∈ 𝐴, 𝑎 ≠ 𝑏)

𝜑𝑎→𝑏(𝒙)[𝑠] ≔
⎩{
⎨
{⎧0 if 𝑠 = 𝑎 (remove mass from 𝑎…)

𝒙[𝑏] + 𝒙[𝑎] if 𝑠 = 𝑏 (... and give it to 𝑏)
𝒙[𝑠] otherwise.

(“…every time I played ✊🏽 I should have played ✋🏽"…)

This is known as internal regret, and leads to correlated equilibria. It is
subsumed by linear swap reget. 𝑂(polylog(|𝐴|)

√
𝑇) internal regret is possible



Full swap regret

Full swap regret: Φ = all functions 𝒳 → 𝒳

• Recent development [Dag+24, PR24]

• In NFGs we can guarantee 𝑂(log log|𝐴| 𝑇
log 𝑇 ) full swap regret

• Note the 𝑇/ log 𝑇 : barely sublinear!

• In EFGs, this is not meaningfully improvable [Das+24]
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More specific transformations Φ

• An extremely recent paper (< 2 weeks ago), also made the interesting points that
in general one might relax the constraint that each 𝜑 ∈ Φ map to 𝒳 [Dan+24]

• It is sufficient that 𝜑 ∈ Φ map to a superset of 𝒳, as long as 𝜑 admits a fixed
point 𝜑(𝒙∗) = 𝒙∗ ∈ 𝒳

• These are called by the authors improper transformations. There are good
reasons to be interested in this relaxation, as it allows for more general notions
of regret and a rate-preserving connection to Blackwell’s approachability



(External) Regret minimization
External regret minimization is the weakest notion of hindsight rationality we have

identified. Hence, one might naturally wonder: why is it so important?



Why is external regret minimization so important?

• Already guarantees best responding* to a static opponent

• Already leads* to equilibrium: coarse correlated equilibrium in all convex games
‣ Includes NFGs and EFGs

• Special case: leads* to set of Nash equilibria in two-player zero-sum games
‣ This approach has led to superhuman performance in real games

• Surprising breakthrough: with caveats, it is possible to reduce more complicated
sets Φ to external regret

*: Ergodic convergence. We will talk about last-iterate convergence more at the end



Application I: Learning a best response against a static opponent

• Typically, the difficulty with learning is handling the nonstationarity of the

environment, and the fact that everyone is learning at the same time.

• When that is not the case, and only one player is learning while nobody else
changes their strategy, it is only reasonable to expect that learning algorithms
can learn to best respond

• This is indeed the case: the average strategy played by the learning player is
almost surely a best response to the opponent’s strategies



Application II: Nash equilibrium in two-player zero-sum games

• From the definition of regret, it is immediate to check that the product of the
average strategies played by external-regret-minimizing players in a two-player
zero-sum game is an 𝜀-Nash equilibrium, where

𝜀 ≤
Reg(𝑇 )

1 + Reg(𝑇 )
2

𝑇



Application III: Coarse correlated equilibria

• With little extra effort, it can be shown that in any general-sum multiplayer game
the average product distribution of play is an 𝜀-coarse correlated equilibrium,
where

𝜀 ≤
max𝑖 Reg(𝑇 )

𝑖
𝑇

• Note the change from sum to max compared to the two-player zero-sum case



From external regret to more complicated Φ regrets



Reducing Φ-regret to external regret: Gordon et al.’s construction

Gordon, Greenwald, and Marks [GGM08] showed that if the following ingredients
can be constructed:
• an efficient no-external-regret algorithm for Φ
• an efficient algorithm to compute a fixed point 𝒙 = 𝜑(𝒙) ∈ 𝒳 of any 𝜑 ∈ Φ

then one can construct an efficient no-Φ-regret algorithm for 𝒳



Application: Blum-Mansour’s algorithm

• As an example of an application of Gordon et al.’s construction (somehow not
documented in the literature?), we can recover directly Blum and Mansour’s 
[BM07] algorithm for Φ-regret for probability simplexes in the case of

Φ = all |𝐴| × |𝐴| column-stochastic matrices

This is known as swap regret and is related to correlated equilibria



No-external-regret algorithms for simplexes

How can we construct a no-external-regret algorithm for the
probability simplex over a finite set of actions?

… We will see algorithms for more complicated sets next time



Two approaches

At a high level, there are two main classes of approaches, both of which are very
reasonable:

1. “Regret tracking style”: prioritize actions based on the empirical regret
cumulated so far by them

2. “Descent style”: at every iteration move a little bit in the direction pointed by the
gradient feedback

👉🏽 Note: some algorithms, including the important multiplicative weights update
(MWU), can be reframed as being part of either category



“Regret tracking style” algorithms



“Regret tracking style” algorithms

Let’s start from the regret tracking style approaches. At every iteration we keep
track of the empirical regret cumulated by each of the actions, that is,

𝒓(𝑡)[𝑎] ≔ ∑
𝑡

𝜏=1
(𝒖(𝜏)[𝑎] − ⟨𝒖(𝜏), 𝒙(𝜏)⟩) ∀𝑎 ∈ 𝐴.

Conceptually, we want to play more often the actions for which we have highest
regret (remember: the regret is the regret for not playing).



A first attempt that doesn’t work: follow-the-leader

• Natural idea: play the action with the highest cumulated regret
‣ After all, this is the action we wish the most we had played in the past…
‣ This algorithm is called follow-the-leader

• This idea does not work: it jumps around too much

• Consider the sequence of utilities

𝒖(1) = ( 0
1/2), 𝒖(2) = (1

0), 𝒖(3) = (0
1), 𝒖(4) = (1

0), 𝒖(5) = (0
1), …

‣ At every time 𝑡 ≥ 2 we pick the action with value 0
‣ In hindsight we could have done 𝑇

2  by always randomizing the choice, leading
to a linear regret



A first attempt that doesn’t work: follow-the-leader

It is clear that we need to soften the choice of action, so that we don’t jump as
much. Possible ideas:
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A first attempt that doesn’t work: follow-the-leader

It is clear that we need to soften the choice of action, so that we don’t jump as
much. Possible ideas:

• We can replace picking the action with the highest regret with picking actions
proportionally to their regret → regret matching

• We can use the softmax function for some finite temperature → multiplicative
weights update

• We can in general regularize the choice → follow-the-regularized-leader

All of these ideas work.
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We cannot pick the action with the highest regret, but can we pick an action
proportionally to their regret?
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Regret matching

We cannot pick the action with the highest regret, but can we pick an action
proportionally to their regret?

… almost. What about actions with negative regret? 

💡 Regret matching idea

Pick an action proportionally to the “ReLU” of their empirical regret

𝒙(𝑡) ∝ [𝒓(𝑡)]+.

(If the right-hand-side is zero, pick uniformly at random)



Regret matching analysis

• Main idea: 𝒓(𝑡+1) − 𝒓(𝑡) ⟂ 𝒙(𝑡) (this is always true, not just for regret matching)

• In regret matching, 𝒙(𝑡) ∝ [𝒓(𝑡)]+
 so in particular

𝒓(𝑡+1) − 𝒓(𝑡) ⟂ [𝒓(𝑡)]+

(this is trivially true even in the edge case in which 𝒓(𝑡) = 𝟎)

• Now use the inequality

‖[𝒂 + 𝒃]+‖
2

2
≤ ‖[𝒂]+ + 𝒃‖

2

applied to 𝒂 = 𝒓(𝑡) and 𝒃 = 𝒓(𝑡+1) − 𝒓(𝑡)



Regret matching analysis

• We immediately obtain

‖[𝒓(𝑡+1)]+‖
2

2
≤ ‖[𝒓(𝑡)]+ + (𝒓(𝑡+1) − 𝒓(𝑡))‖

2

2
= ‖[𝒓(𝑡)]+‖

2

2
+ ‖𝒓(𝑡+1) − 𝒓(𝑡)‖2

2

• Hence by induction we have

‖[𝒓(𝑇 )]+‖
2

2
≤ ∑

𝑇

𝑡=1
‖𝒖(𝑡) − ⟨𝒖(𝑡), 𝒙(𝑡)⟩𝟏‖2

2

• Taking square roots, this shows Reg(𝑇 ) ≤ √|𝐴| 𝑇  assuming the utilities are all
in [−1, 1]



Multiplicative Weights Update

MWU

Another approach is to smoothen out the hard argmax we were operating in
follow-the-leader, and replace it with a softmax:

𝒙(𝑡+1) ∝ exp(𝜂𝒓(𝑡))

where 𝜂 > 0 is the learning rate, and the exponentiation is component-wise

This algorithm is called Multiplicative Weights Update (MWU)



Follow-the-regularized-leader

• All the algorithms we have seen so far are directly or indirectly instances of a
meta-algorithm called follow-the-regularized-leader (FTRL)
‣ Not obvious for regret matching [FKS21]

FTRL

Let 𝜓 : 𝒳 → ℝ be 1-strongly convex wrt some norm ‖⋅‖. At every time 𝑡, FTRL
produces the strategy

𝒙(𝑡+1) ≔ arg max
𝒙∈Δ(𝐴)

{⟨𝒓(𝑡), 𝒙⟩ −
1
𝜂
𝜓(𝒙)}



Aside: Follow-the-regularized-leader on convex & closed sets

👉🏽 Aside: FTRL is far more general than probability simplexes Δ(𝐴), though in
general the vector of regrets must be replaced with the cumulative utility

FTRL

Let 𝒳 be a convex and closed set and 𝜓 : 𝒳 → ℝ be 1-strongly convex wrt
some norm ‖⋅‖. At every time 𝑡, the general form of FTRL produces the point

𝒙(𝑡+1) ≔ arg max
𝒙∈𝒳

{⟨∑
𝑡

𝜏=1
𝒖(𝜏), 𝒙⟩ −

1
𝜂
𝜓(𝒙)}



Follow-the-regularized-leader

Theorem

No matter the sequence of utilities 𝒖(𝑡) received by FTRL, the strategies 𝒙(𝑡)

produced by FTRL satisfy the regret bound

Reg(𝑇 )(𝒙∗) ≤
D𝜓(𝒙∗ ‖ 𝒙(1))

𝜂
+ 𝜂 ∑

𝑇

𝑡=1
‖𝒖(𝑡)‖2

∗
−

1
8𝜂

∑
𝑇

𝑡=2
‖𝒙(𝑡) − 𝒙(𝑡−1)‖2

where ‖⋅‖∗ is the norm dual to ‖⋅‖ and D𝜓 denotes the Bregman divergence
induced by 𝜓.

Proof: special case of a more general result for predictive FTRL we will see later.



MWU as FTRL

• Multiplicative Weights Update is simply FTRL where 𝜓 is chosen to be the
negative entropy function

𝜓(𝒙) = − ∑
𝑎∈𝐴

𝒙[𝑎] log 𝒙[𝑎]

which is 1-strongly convex wrt the 𝑙1 norm

• The Bregman divergence induced by 𝜓 is the KL divergence. Note that 𝒙(1) is
uniform and therefore

D𝜓(𝒙∗ ‖ 𝒙(1)) ≤ log|𝐴|

for all 𝒙∗ ∈ Δ(𝐴).



MWU as FTRL

• Hence,

Reg(𝑇 )(𝒙∗) ≤
D𝜓(𝒙∗ ‖ 𝒙(1))

𝜂
+ 𝜂 ∑

𝑇

𝑡=1
‖𝒖(𝑡)‖2

∗
−

1
𝜂

∑
𝑇

𝑡=2
‖𝒙(𝑡) − 𝒙(𝑡−1)‖2

≤
log|𝐴|

𝜂
+ 𝜂 ∑

𝑇

𝑡=1
‖𝒖(𝑡)‖2

∞
.

• Assuming that all utilities of the game are in [−1, 1] and picking 𝜂 = √log|𝐴|√
𝑇

, we
find that

Reg(𝑇 ) ≤ √log|𝐴| 𝑇 ,



MWU vs Regret Matching

• In theory, MWU has a better regret bound than regret matching
‣ 𝑂(√log|𝐴| 𝑇) vs 𝑂(√|𝐴| 𝑇)

• In practice, regret matching is preferred because of its lack of hyperparameters
(learning rate) to tune



“Descent style” algorithms



“Descent style” algorithms

• Another class of algorithms is based on the idea of online gradient descent: at
every iteration nudge the strategy in the direction of the given utility gradient

Online projected gradient descent (OPGD)

Let 𝒳 be closed and convex. At every time 𝑡, OPGD picks the strategy

𝒙(𝑡+1) ≔ Proj𝒳(𝒙(𝑡) + 𝜂𝒖(𝑡)) = argmin
𝒙∈𝒳

‖𝒙 − (𝒙(𝑡) + 𝜂𝒖(𝑡))‖2
2
.



Online mirror descent

• Akin to what happens in offline optimization, we can generalize (online)
projected gradient descent into (online) mirror descent.

Online mirror descent (OMD)

Let 𝒳 be closed and convex and 𝜓 be 1-strongly convex with respect to some
norm ‖⋅‖. At every time 𝑡, OMD picks the strategy

𝒙(𝑡+1) ≔ argmin
𝒙∈𝒳

{⟨𝒖(𝑡), 𝒙⟩ −
1
𝜂
D𝜓(𝒙 ‖ 𝒙(𝑡))}.



Online mirror descent

Theorem

No matter the sequence of utilities 𝒖(𝑡) received by OMD, the strategies 𝒙(𝑡)

produced by OMD satisfy the regret bound

Reg(𝑇 )(𝒙∗) ≤
D𝜓(𝒙∗ ‖ 𝒙(1))

𝜂
+ 𝜂 ∑

𝑇

𝑡=1
‖𝒖(𝑡)‖2

∗
−

1
8𝜂

∑
𝑇

𝑡=2
‖𝒙(𝑡) − 𝒙(𝑡−1)‖2

where ‖⋅‖∗ is the norm dual to ‖⋅‖ and D𝜓 denotes the Bregman divergence
induced by 𝜓.

Proof: special case of a more general result for predictive OMD we will see later.



MWU as OMD

• It turns out that MWU is also an instance of OMD, not just FTRL!
‣ For the same 𝜓 set as negative entropy we used before

• In fact, OMD = FTRL whenever 𝜓 is Legendre, which means that the gradients of 
𝜓 explode at the boundary of the strategy set 𝒳



Optimism and predictivity



What is optimism

In recent years, there has been a lot of interest in the idea of optimism in learning
algorithms

💡 Nonstationary ≠ adversarial

When all players learn at the same time, the environment is stationary but not
necessarily adversarial

Can take advantage of this to design learning algorithms with better regret
guarantees and convergence properties?



Predictivity and Optimism

💡 Predictivity

The idea of optimism is to anticipate the next utility gradient 𝒖(𝑡+1) by having a
prediction 𝒎(𝑡+1)

 

💡 Optimism

The idea of optimism is to use predictivity with the specific guess 𝒎(𝑡+1) = 𝒖(𝑡)

at all times 𝑡. This corresponds to predicting that the feedback is slow-changing



What is optimism

• Standard FTRL:

𝒙(𝑡+1) ≔ arg max
𝒙∈𝒳

{⟨∑
𝑡

𝜏=1
𝒖(𝜏), 𝒙⟩ −

1
𝜂
𝜓(𝒙)}

• Predictive FTRL:

𝒙(𝑡+1) ≔ arg max
𝒙∈𝒳

{⟨𝒎(𝑡+1) + ∑
𝑡

𝜏=1
𝒖(𝜏), 𝒙⟩ −

1
𝜂
𝜓(𝒙)}

• Optimistic FTRL:

𝒙(𝑡+1) ≔ arg max
𝒙∈𝒳

{⟨𝒖(𝑡) + ∑
𝑡

𝜏=1
𝒖(𝜏), 𝒙⟩ −

1
𝜂
𝜓(𝒙)}



What is optimism

• Standard OMD:

𝒙(𝑡+1) ≔ argmin
𝒙∈𝒳

{⟨𝒖(𝑡), 𝒙⟩ −
1
𝜂
D𝜓(𝒙 ‖ 𝒙(𝑡))}

• Predictive OMD:

𝒙(𝑡+1) ≔ argmin
𝒙∈𝒳

{⟨𝒖(𝑡) + (𝒎(𝑡+1) − 𝒎(𝑡)), 𝒙⟩ −
1
𝜂
D𝜓(𝒙 ‖ 𝒙(𝑡))}

• Optimistic OMD:

𝒙(𝑡+1) ≔ argmin
𝒙∈𝒳

{⟨𝒖(𝑡) + (𝒖(𝑡) − 𝒖(𝑡−1)), 𝒙⟩ −
1
𝜂
D𝜓(𝒙 ‖ 𝒙(𝑡))}



“Vanilla” FTRL and OMD correspond to the case where the prediction is always set
to zero: 𝒎(𝑡) = 𝟎 for all 𝑡



RVU bounds

Theorem

Predictive FTRL and predictive OMD satisfy the regret bound

Reg(𝑇 )(𝒙∗) ≤
D𝜓(𝒙∗ ‖ 𝒙(1))

𝜂
+ 𝜂 ∑

𝑇

𝑡=1
‖𝒖(𝑡) − 𝒎(𝑡)‖2

∗
−

1
8𝜂

∑
𝑇

𝑡=2
‖𝒙(𝑡) − 𝒙(𝑡−1)‖2

• The above form of the regret bound is called an RVU bound (regret bounded by
variation in utilities) [Syr+15]

• RVU bounds come in useful for a variety of purposes



Accelerated convergence to two-player zero-sum Nash

• When all players use optimistic FTRL or optimistic OMD in a two-player zero-sum
game, the average strategies converge to the set of Nash equilibria at a rate of 
𝑂( 1

𝑇 ) [Syr+15]

• We know from before that the sum of the regrets of the players bounds the Nash
equilibrium approximation



Accelerated convergence to two-player zero-sum Nash

• In a two-player zero-sum game, the utility of player 1 is given by 𝒖(𝑡)
1 = 𝑨𝒚(𝑡)

and that of player 2 by 𝒖(𝑡)
2 = 𝑨⊤𝒙(𝑡), leading to

Reg(𝑇 )
1 ≤

𝑂𝑇 (1)
𝜂

+ 𝜂 ∑
𝑇

𝑡=1
‖𝑨(𝒚(𝑡) − 𝒚(𝑡−1))‖2

∗
−

1
8𝜂

∑
𝑇

𝑡=2
‖𝒙(𝑡) − 𝒙(𝑡−1)‖2

Reg(𝑇 )
2 ≤

𝑂𝑇 (1)
𝜂

+ 𝜂 ∑
𝑇

𝑡=1
‖𝑨⊤(𝒙(𝑡) − 𝒙(𝑡−1))‖2

∗
−

1
8𝜂

∑
𝑇

𝑡=2
‖𝒚(𝑡) − 𝒚(𝑡−1)‖2

• Summing and picking 𝜂 constant small enough (which depends on the operator
norm of 𝑨 and the norm ‖⋅‖), we obtain

Reg(𝑇 )
1 + Reg(𝑇 )

2 = 𝑂𝑇 (1)



Accelerated convergence to equilibrium: the general case

• Rates of 𝑂̃( 1
𝑇 ) for coarse correlated and correlated equilibria (CCE) in normal-

form games (and beyond) are also known for the multiplayer case, but they are
much harder to prove

• One of the main obstacles: convergence to CCE is driven by the max of the
regrets of the players, not the sum

• [Syr+15] showed 𝑂(𝑛 log|𝐴| 𝑇 −3
4 ) for OMWU using RVU bounds

‣ Improved by [CP20] to 𝑂(𝑛 log5
6 |𝐴| 𝑇 −5

6 ) for two-player general-sum games
only



Accelerated convergence to equilibrium: the general case

• [DFG21] showed 𝑂(𝑛 log|𝐴| log4 𝑇
𝑇 ) convergence for OMWU using a very

complicated analysis based on the idea of high-order stability

• [Far+22] showed 𝑂(𝑛 |𝐴| log 𝑇
𝑇 ) using RVU bounds paired with a special

regularizer

• [FPS24] Under submission: 𝑂(𝑛 log2|𝐴| log 𝑇
𝑇 ) using RVU bounds + nonmonotonic

learning rate control

• Can 𝑂(𝑛 log|𝐴| 1
𝑇 ) be achieved in general games?



The question of convergence in iterates



Most guarantees of learning in games are possessed by the average distribution of
play

💡 Iterate convergence

This is a bit unsatisfactory: can we guarantee that the last iterate or best iterate of
the dynamics converges to a good solution?



Iterate convergence

• Complexity theoretic considerations imply that iterate convergence is not
possible beyond two-player zero-sum games

• In two-player zero-sum games, what is known?

• Most strong results (that is, with good rates) are known only for optimistic online
projected gradient descent

• Asymptotic results (i.e., without rates) are also known for optimistic multiplicative
weights update



Optimistic gradient descent-ascent

• There is a short and sweet proof that optimistic OPGD has 𝑂( 1√
𝑇

) best-iterate
convergence to the set of Nash equilibria in two-player zero-sum games
‣ Proof from [Ana+22]

• The idea is to use the fact that the sum of the regrets of the two players must be
nonnegative together with the RVU bounds of the players



Optimistic gradient descent-ascent

• What about last-iterate convergence?

• The result holds, but it is significantly more complicated to prove [COZ22]

• Proof uses a Lyapunov function that was constructed using SOS programming

• Confirms a bound of 𝑂𝑇 ( 1√
𝑇

) convergence, hiding only polynomial constants in
the number of actions for any payoff matrix with entries in [−1, 1]



What about optimistic multiplicative weights update?

• As we have seen so far, optimistic MWU has some of the properties known:
‣ log|𝐴| dependence on the number of actions 𝐴
‣ log4 𝑇  dependence on the number of iterations 𝑇

• It is known that in two-player zero-sum games, optimistic MWU has asymptotic
convergence to the set of Nash equilibria [DP19, HAM21]

• If the Nash is unique, then the convergence is linear, but tainted by possibly
exponentially large problem-dependent constants [Wei+20] (similar to Tseng-
type analysis of extragradient [Tse95])

• What about concrete rates?



I believe it’s fair to say that many people in the field believed that good last-iterate
convergence of OMWU was just one good trick away

After all, OMWU has always spoiled us with its good properties



FTRL struggles with last-iterate convergence

• It turns out things are not like that: in a very recent development, it was shown
that OMWU cannot possibly converge in iterates (neither best nor last) [Cai+24]

• In fact, the lack of last-iterate convergence applies to any known instance of
FTRL

• Constructive proof by analyzing the dynamics in the same 2 × 2 game

𝐴𝛿 ≔ (
1
2 + 𝛿

0

1
2
1
)

whose unique Nash equilibrium is at 𝑥∗ ≔ ( 1
1+𝛿 ,

𝛿
1+𝛿), 𝑦∗ ≔ ( 1

2(1+𝛿) ,
1+2𝛿

2(1+𝛿)).



FTRL struggles with last-iterate convergence



FTRL struggles with last-iterate convergence



FTRL struggles with last-iterate convergence

Theorem

Under standard assumptions about the regularizer, there is no function 𝑓  such
that optimistic FTRL produces a last-iterate convergence rate of 𝑓(𝑑1, 𝑑2, 𝑇 ) → 0
where the entries of the loss matrix are in [0, 1], and 𝑑1 and 𝑑2 are the number of
actions of the players
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