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Imperfect-information Extensive-Form Games

• Games played on a game tree (think chess, go, poker, monopoly, 
Avalon, Liar’s dice, …)
• Stochastic moves are allowed (random draws of cards, random roll 

of dice, random arrivals, …)

We will be mostly interested in the general case of
imperfect-information games

(i.e., certain moves or stochastic events are only observed by a subset of players)
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Difficulties with Extensive-Form Games

Compared to normal-form games, imperfect-information extensive-
form games bring many conceptual challenges

• Nonetheless: many positive results 🎉

The number of (deterministic) strategies grows exponentially in the game tree

Other players have control over what part of the game tree is visited/explored

1

3

Imperfect information makes backward induction and local reasoning not viable2

General principle: you need to think about what the opponents don’t know about you and leverage that 
to your advantage. Sometimes that means bluffing, to not reveal private information.
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How it started: How it’s going:

1950

2017
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Example (Kuhn poker).

In Kuhn poker, each player puts an ante worth $1 into the pot. Each player is then privately dealt one card 
from a deck that contains 3 unique cards (Jack, Queen, King). Then, a single round of betting then occurs, with 
the following dynamics. First, Player 1 decides to either check or bet $1.

Then,
• If Player 1 checks, Player 2 can check or bet another $1 after matching the pot.

• If Player 2 checks, a showdown occurs; if Player 2 bets, Player 1 can fold or call.
• If Player 1 folds, Player 2 takes the pot; if Player 1 calls, a showdown occurs.

• If Player 1 bets, Player 2 can fold or call the bet by matching the pot.
• If Player 2 folds, Player 1 takes the pot; if Player 2 calls, a showdown occurs.

When a showdown occurs, the player with the higher card wins the pot and the game immediately ends



How Extensive-Form Games Are Drawn



As noted by Kuhn himself, even the previous small game already captures central 
aspects of deceptive behavior

J
K
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A Bit of Nomenclature

• The nodes of the game tree are often called histories (will be 
denoted with letter h)
• The collection of information sets for a given player is called the 

information partition of the player
• The game has perfect information if all information sets are 

singleton
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Perfect Recall: information sets satisfy the fact that that no player 
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More formally:



Strategies in Extensive-Form Games

Approach 1: Convert to Normal-
Form Game

(aka “reduced normal-form 
representaCon”)

Approach 2: The RL way: 
“Behavioral Strategies”
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Strategic Form

Idea: Strategy = randomize a deterministic contingency plan

Each player constructs a 
list of all possible 

assignments of actions 
at each information set

(Histories in the same 
information must get 

assigned the same 
action)

Valid assignments for Player 1: 27
Valid assignments for Player 2: 64

These assignments are called 
“reduced normal-form plans”
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Example: Nash equilibrium in Kuhn 
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𝑥#𝐴𝑦

Distribution over 
the 27 plans of 

Player 1
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the 64 plans of 

Player 2

Payoff matrix on 
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You can use any technique for normal-form games: 
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Example: Nash equilibrium in Kuhn 
poker:

max
!
min
"
𝑥#𝐴𝑦

Distribution over 
the 27 plans of 

Player 1
Distribution over 
the 64 plans of 

Player 2

Payoff matrix on 
the left

You can use any technique for normal-form games: 
learning, linear programming, …

Big issue: the number of reduced normal-form plans scales 
exponentially with the game tree size!

This approach is not scalable beyond very small games

We need better techniques

Equivalent Normal-Form Game
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Recent discovery: for certain algorithms, we can actually get around the exponential size and 
still operate in this exponential representation implicitly via a kernel trick

Specifically, this applies to the multiplicative weights update (MWU) algorithm.

Takeaway
Running MWU on the reduced normal-form representation 
of an extensive-form game can be done in linear time per 
iteration in the size of the game tree (as opposed to linear 
in the number of reduced normal-form plans)

We can use this technique to 
compute Nash eq. (in two-

player zero-sum games) and 
coarse correlated equilibrium

[Farina et al., 2022] Kernelized Multiplicative Weights for 0/1-Polyhedral Games: Bridging the Gap Between Learning in Extensive-Form and Normal-Form Games

https://www.mit.edu/~gfarina/2022/komwu_icml22/


Recap on Normal-Form Strategies

Idea Obvious downsides Good news

(Reduced) Normal-form 
strategies

Distribution over 
deterministic strategies

𝜇 ∈ Δ(𝑃𝑙𝑎𝑛𝑠)

Exponentially-sized 
object 

In rare cases, it’s possible 
to operate implicitly on 
the exponential object 
via a kernel trick
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Idea: Strategy = choice of distribution over available actions 
at each “decision point”

Information set

Let’s introduce some notation for the tree-form decision process faced by 
each player…



Tree-form Decision 
Processes
• The game tree is a description of the global dynamics of 

the game, without taking the side of any player in 
particular

• The problem faced by an individual player is called a tree-
form decision process

• TFDP provides a more natural formalism for defining 
player-specific quantities and procedures, such as 
strategies and learning algorithms, that inherently refer to 
the decision space that one player faces while playing the 
game

• From the point of view of each player, two types of nodes: 
decision points and observation points
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Another Example

1. For each information set of the player, construct a corresponding decision node

2. The parent of each decision node is the last action of the player on the path from the 
root of the game tree to any node of the information set

💡 Does not matter which one 
when the player has perfect 

recall! (why?)

3. If multiple decision nodes want to have the same parent action, connect with an 
observation node

Algorithm for constructing the tree-form decision process of a player:
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Behavioral strategies

0.1 0.9

0.8 0.2

0.5 0.5

0.4 0.6

0.75 0.25

0.1 0.9

! Set of strategies is convex

❌ Expected utility is not     
      linear in this representation

      Reason: prob. of reaching a 
      terminal state is product of     
      variables

Products = non-convexity 😪

Idea: Strategy = choice of 
distribution over available 

actions at each decision point
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Game tree:

Decision problem and behavioral strategy of Player 1

Decision problem and behavioral strategy of Player 2

Prob of reaching this terminal state: 1/6 (Nature) x 0.1 (Pl1) x 0.4 (Pl2)
0.6 0.4



Expected Utility

Game tree:

Decision problem and behavioral strategy of Player 1

Decision problem and behavioral strategy of Player 2

Prob of reaching this terminal state: 1/6 (Nature) x 0.1 (Pl1) x 0.4 (Pl2)
x 0.8 (Pl1)

0.6 0.4



Expected Utility

Game tree:

Decision problem and behavioral strategy of Player 1

Decision problem and behavioral strategy of Player 2

Prob of reaching this terminal state: 1/6 (Nature) x 0.1 (Pl1) x 0.4 (Pl2)
x 0.8 (Pl1)

0.6 0.4

When these are variables being optimized, we have a product! Non-
convexity in player’s strategy



Kuhn’s Theorem

(Under perfect recall assumption)
Normal-form strategies and behavioral strategies are equally powerful

(more formally: they can induce the same distribution over terminal states)

🚨 Danger zone™: the theorem is not true anymore if the player does not have 
perfect recall!



Recap on Behavioral Strategies

Idea Obvious downsides Good news

(Reduced) Normal-form 
strategies

Distribution over 
deterministic strategies

𝜇 ∈ Δ(Π)

Exponentially-sized 
object 

In rare cases, it’s possible 
to operate implicitly on 
the exponential object 
via a kernel trick

Behavioral strategies Local distribution over 
actions at each decision 
point

𝒃 ∈	×𝒋	𝚫(𝑨𝒋)

Expected utility is 
nonconvex in the the 
entries of vector 𝒃

Kuhn’s theorem: same 
power as reduced 
normal-form strategies
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Idea: Store probability for whole 
sequences of actions

Since sequence-form strategies already automatically 
encode products of probabilities on paths, expected utility 

is linear in this strategy representation!
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Game tree:

Decision problem and behavioral strategy of Player 1

Decision problem and behavioral strategy of Player 2

Prob of reaching this terminal state: 1/6 (Nature) x 0.08 (Pl1) x 0.4 (Pl2)
0.6 0.4

Nonlinearity is gone
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sequence-form polytopes

Everything sBll convex: We can use convex opBmizaBon tools
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expected utility when players use 

that combination of reduced normal-
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extensive-form game to a normal-

form game

Inherit notions of Nash, correlated 
equilibrium, coarse correlated 

equilibrium, …

Nash equilibrium in Kuhn poker:

max
!
min
"
𝑥#𝐴𝑦

Distribution over 
the 27 plans of 

Player 1
Distribution over 
the 64 plans of 

Player 2

Payoff matrix on 
the left

You can use any technique for normal-form games: 
learning, linear programming, …

Payoff matrix: Each cell contains the 
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Scale linearly with 
tree size



Recap

Idea Obvious downsides Good news

(Reduced) Normal-form 
strategies

Distribution over 
deterministic strategies

𝜇 ∈ Δ(Π)

Exponentially-sized 
object 

In rare cases, it’s possible 
to operate implicitly on 
the exponential object 
via a kernel trick

Behavioral strategies Local distribution over 
actions at each decision 
point

𝑏 ∈	×" 	Δ(𝐴")

Expected utility is 
nonconvex in the the 
entries of vector 𝑏

Kuhn’s theorem: same 
power as reduced 
normal-form strategies

Sequence-form 
strategies

”Probability flows” on 
the tree-form decision 
process

𝒙 ∈ 𝑸 (convex polytope)

None Everything is convex!

Kuhn’s theorem applies 
automatically.
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Recall (Part I): No-External-Regret

Learning
Algorithm

Strategies

𝑥(") ∈ 𝑋

Utility vectors

𝑢(")

Objective: sublinear (external) regret

𝑅($) ≔ max
%&∈(	

*
"*+

$

⟨𝑢("), -𝑥 − 𝑥(")⟩	

𝑋 = Simplex for normal-form games

𝑋 = sequence-form polytope for 
extensive-form games
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Recall (Part I): Learning Algorithms

Regret matching (RM): Probability of each action 
proportional to ReLU of regret on the action

Multiplicative Weights Update (MWU): Prob. of each 
action proportional to exp of regret on the action

Follow-The-Regularized-Leader (FTRL):

𝑥(&) ∝ 𝑟 & (

𝑥(&) ∝ exp(𝜂 ⋅ 𝑟 & )

𝑥(&) = argmax
!∈*

⟨𝑟(&), 𝑥⟩ −
1
𝜂
𝜓(𝑥)	

Recall: MWU is FTRL 
with negative entropy



Recall (Part I): Connections with Equilibria

• Recall: when all players play external-regret-minimizing 
strategies, then:
• In two-player zero-sum games, their average strategies converge to the set of 

Nash equilibrium (gives an alternative approach to previous lecture)
• In general, the average product distribution of play converges to the set of 

coarse-correlated equilibria



No-Regret Algorithms for EFGs

Different conceptual approaches exist:

Exploits 
structure of 
problem and 
specific learning 
algorithm

Less specialized; 
general tool



No-Regret Algorithms for EFGs

Different conceptual approaches exist:

Conversion to a single simplex of 
convex combinations of vertices

Exploits 
structure of 
problem and 
specific learning 
algorithm

Less specialized; 
general tool



No-Regret Algorithms for EFGs

Different conceptual approaches exist:

Conversion to a single simplex of 
convex combinations of vertices

Decomposition into local 
decision problem over actions at 

each decision point

Exploits 
structure of 
problem and 
specific learning 
algorithm

Less specialized; 
general tool



No-Regret Algorithms for EFGs

Different conceptual approaches exist:

Conversion to a single simplex of 
convex combinations of vertices

Decomposition into local 
decision problem over actions at 

each decision point

Use general convex optimization 
tools (e.g., FTRL)

Exploits 
structure of 
problem and 
specific learning 
algorithm

Less specialized; 
general tool



No-Regret Algorithms for EFGs

Different conceptual approaches exist:

Conversion to a single simplex of 
convex combinations of vertices

Decomposition into local 
decision problem over actions at 

each decision point

Use general convex optimization 
tools (e.g., FTRL)

Exploits 
structure of 
problem and 
specific learning 
algorithm

Less specialized; 
general tool

Main idea:

𝑅($) ≔ max
&'∈)	

=
+,-

$

𝑢 + , @𝑥 − 𝑥 +

Every point in the polytope is a convex combination of 
its finitely many vertices V ≔ 𝑣-, … , 𝑣. . So, operate a 
change of variable: learn the convex combination, not 
the points 𝑥(+)

𝑅($) ≔ max
/0∈1(2)	

=
+,-

$ ⋮
⟨𝑢 + , 𝑣⟩

⋮
, H𝜆 − 𝜆(+)

Perf. of vertex



No-Regret Algorithms for EFGs

Different conceptual approaches exist:

Conversion to a single simplex of 
convex combinations of vertices

Decomposition into local 
decision problem over actions at 

each decision point

Use general convex optimization 
tools (e.g., FTRL)

Exploits 
structure of 
problem and 
specific learning 
algorithm

Less specialized; 
general tool

Key question:

How to sidestep 
exponential size?

Main idea:

𝑅($) ≔ max
&'∈)	

=
+,-

$

𝑢 + , @𝑥 − 𝑥 +

Every point in the polytope is a convex combination of 
its finitely many vertices V ≔ 𝑣-, … , 𝑣. . So, operate a 
change of variable: learn the convex combination, not 
the points 𝑥(+)

𝑅($) ≔ max
/0∈1(2)	

=
+,-

$ ⋮
⟨𝑢 + , 𝑣⟩

⋮
, H𝜆 − 𝜆(+)

Perf. of vertex



No-Regret Algorithms for EFGs

Different conceptual approaches exist:

Conversion to a single simplex of 
convex combinations of vertices

Decomposition into local 
decision problem over actions at 

each decision point

Use general convex optimization 
tools (e.g., FTRL)

Exploits 
structure of 
problem and 
specific learning 
algorithm

Less specialized; 
general tool

Main idea:

Run a local no-regret algorithm at 
each decision point to update your 
strategy.

”Process” the utility vector 𝑢(+) (which 
is for the whole sequence-form 
strategy) and chop it up into local 
feedback for each decision point.



No-Regret Algorithms for EFGs

Different conceptual approaches exist:

Conversion to a single simplex of 
convex combinations of vertices

Decomposition into local 
decision problem over actions at 

each decision point

Use general convex optimization 
tools (e.g., FTRL)

Exploits 
structure of 
problem and 
specific learning 
algorithm

Less specialized; 
general tool

Key question:

What is the local 
feedback?

Main idea:

Run a local no-regret algorithm at 
each decision point to update your 
strategy.

”Process” the utility vector 𝑢(+) (which 
is for the whole sequence-form 
strategy) and chop it up into local 
feedback for each decision point.



No-Regret Algorithms for EFGs

Different conceptual approaches exist:

Conversion to a single simplex of 
convex combinations of vertices

Decomposition into local 
decision problem over actions at 

each decision point

Use general convex optimization 
tools (e.g., FTRL)

Exploits 
structure of 
problem and 
specific learning 
algorithm

Less specialized; 
general tool

Main idea:

The sequence-form polytope is a convex set. So, we can 
apply the FTRL algorithm in its general form, and that 
guarantees no-regret

𝑥(&) = argmax
!∈+

⟨𝑈(&), 𝑥⟩ −
1
𝜂
𝜓(𝑥)	



No-Regret Algorithms for EFGs

Different conceptual approaches exist:

Conversion to a single simplex of 
convex combinations of vertices

Decomposition into local 
decision problem over actions at 

each decision point

Use general convex optimization 
tools (e.g., FTRL)

Exploits 
structure of 
problem and 
specific learning 
algorithm

Less specialized; 
general tool

Key question:

What regularizers are 
easy to deal with?

Main idea:

The sequence-form polytope is a convex set. So, we can 
apply the FTRL algorithm in its general form, and that 
guarantees no-regret
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General Setup:
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𝟏	 ∈ ℝL!         

For 𝑡 = 1, 2, …
Play mixed strategy ΩM ∋ 𝑥(N) ≔ ∑O	∈	L! 𝜆

(N) 𝑣 ⋅ 𝑣

Observe reward vector 𝑢(N) ∈ ℝP
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Vertex MWU algorithm
Setup

Ω3 ⊆ ℝ4
𝑉5  vertices of Ω3 

Main theorem

When ΩM has 0/1-coordinate 
vertices, Vertex MWU can be 

implemented using d+1 
evaluations of the 0/1-

polyhedral kernel at each 
iteration

Crucially independent on the number of vertices of ΩM!

As long as the kernel function can be evaluated efficiently, 
then Vertex (O)MWU can be simulated in polynomial time
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Definition (0/1-feature map of Ω)

𝜙[ ∶ ℝP → ℝL,                        𝜙[ 𝑥 𝑣 ≔ ∏\:O \ ^J𝑥[𝑘] 

Given any vector, for each vertex it computes the product 
of the coordinates that are hot for that vertex

Definition (0/1-polyhedral kernel of Ω)

𝐾[ ∶ ℝP×ℝP → ℝ,    𝐾[ 𝑥, 𝑦 ≔ 𝜙[ 𝑥 , 𝜙[ 𝑦 = ∑O∈L∏\:O \ ^J𝑥 𝑘 ⋅ 𝑦[𝑘]



Let’s see how the feature map and the kernel help 
simulate Vertex MWU
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Lemma 1: At all times t, 𝜆 N  is 
proportional to the feature 

map of the vector

ℝP ∋ 𝑏 N ≔ exp 𝜂H
c^J

NdJ

𝑟 c 	

Recall (feature map):
𝜙! ∶ ℝ" → ℝ#,    𝜙! 𝑥 𝑣 ≔ ∏$:& $ '(𝑥[𝑘] 

Proof: by induction 

Consequence: by keeping track of 𝑏(N) we 
are implicitly keeping track of 𝜆(N) as well

…So, no need to actually perform the update on 
line 5 explicitly

5

3

Remaining obstacle: how can 
we evaluate line 3 with only 

implicit access to 𝜆(&) via 𝑏(&)?
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Ω ⊆ ℝ4
𝑉 vertices of Ω
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Lemma 2: At all times t, 𝑥 N  can be reconstructed from 𝑏(N) as

𝑥(N) = 1 −
𝐾[ 𝑏 N , 𝟏 − 𝑒J
𝐾[ 𝑏 N , 𝟏

, … , 1 −
𝐾[(𝑏 N , 𝟏 − 𝑒P)
𝐾[(𝑏 N , 𝟏)

(d+1 kernel 
evaluations)



𝜆(J) ≔ J
|L|𝟏	 ∈ ℝ

L        

For 𝑡 = 1, 2, …
Play 𝑥(N) ≔ ∑O	∈	L! 𝜆

(N) 𝑣 ⋅ 𝑣

Observe utility 𝑢(N) ∈ ℝP

Set 𝜆 NQJ 𝑣 ≔ R(#) O ⋅T%	⟨( # ,*⟩

∑*,∈. R
(#) O, ⋅T%	⟨( # ,*,⟩

Vertex MWU algorithm
Setup

Ω ⊆ ℝ4
𝑉 vertices of Ω
𝑉 ⊆ {0,1}4  

𝑏(J) ≔ 0 ∈ ℝP
𝑏(J) ≔ 𝟏	 ∈ ℝP        

For 𝑡 = 1, 2, …

Play 𝑥(+) ≔ 1 − 6! 7 " ,𝟏:;#
6! 7 " ,𝟏

, … , 1 − 6!(7 " ,𝟏:;$)
6!(7 " ,𝟏)

Observe utility 𝑢(N) ∈ ℝP

Set 𝑏 NQJ ≔ exp 𝜂 ∑c^JN 𝑢 c

Kernelized MWU algorithm
Setup

Ω ⊆ ℝ4
𝑉 vertices of Ω
𝑉 ⊆ {0,1}4  

Handout with proof at: https://www.mit.edu/~gfarina/2024/mit_theory_reading_group_komwu_2024/
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Idea: Minimize regret globally on the tree
by thinking locally at each decision point

CFR updates strategies in behavioral form…

…but is a no-external-regret algorithm for 
sequence-form strategies

🚨 
Papercut 
Alert™

Counterfactual Regret Minimization



Big Picture Idea:

A B
C

D E F

Local 
Learner

Local 
Learner

Local 
Learner

Local 
Learner

Local 
Learner

Local 
Learner

Each local 
learner is 

responsible for 
refining the 

behavior at their 
decision point 

Can locally use 
regret matching, 

mulBplicaBve 
weights update, 

…



Local Training Feedback

Each local learner receives as feedback what is known as a 
counterfactual utility vector

This is constructed starBng from the 𝑢(")
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Learning

Algorithm

𝑏J

𝑏e

𝑏J𝑏f

𝑏J𝑏g

Strategy
(in sequence form)

𝑏J 𝑏e

𝑏f 𝑏g

Probabilities of actions chosen 
by local learners

Local 
Learner

Local 
Learner
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Recall: Learning in Normal-Form Games

-2.0

+1.4

-0.7

-0.4

Utility vector
(for sequence-form 
strategy)

Strategy

𝑏J 𝑏e

𝑏f 𝑏g

-2.0
+1.4 𝑏J

𝑏e

𝑏J𝑏f

𝑏J𝑏g

Strategy
(in sequence form)

CFR 
Learning

Algorithm-0.7 -0.4

Main question: what utility 
to pass to the local learners?

Local 
Learner

Local 
Learner
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Counterfactual Utilities

𝑏J 𝑏e

𝑏f 𝑏g

-2.0
+1.4

-0.7 -0.4

Local 
Learner

Local 
Learner

Give to each local learner the expected utility in the subtree
rooted at each action:

N𝑢f = −0.7
N𝑢g = −0.4
N𝑢e = +1.4



Counterfactual Utilities

𝑏J 𝑏e

𝑏f 𝑏g

-2.0
+1.4

-0.7 -0.4

Local 
Learner

Local 
Learner

Give to each local learner the expected utility in the subtree
rooted at each action:

N𝑢f = −0.7
N𝑢g = −0.4
N𝑢e = +1.4
N𝑢J = −2.0 + 𝑏f ⋅ −0.7 + 𝑏g ⋅ (−0.4)
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Further pushing performance

• Regret Matching+ at each decision point (see Lecture 5)
• Use alternation

• When computing average strategy, weigh strategy at time t by t:

�̅�(#) ∝B
#

𝑡	 ⋅ 𝑥(&)	

CFR+: CFR with the following seQngs:



Advantages of CFR

…On the other hand, it converges to equilibrium at a 1/sqrt(T) rate, 
rather than e^(-T)

Compared to linear programming, CFR is significantly more 
scalable

CFR uses an approach local to each decision point (easier to 
parallelize, warm-start, etc.)

- [Brown & Sandholm, Reduced Space and Faster Convergence in Imperfect-Information Games via Pruning. ICML-17]
- [Brown & Sandholm, Strategy-based warm starting for regret minimization in games, AAAI 2016]
- …



CFR Lends itself to further extensions



FTRL in Extensive-Form Games



Follow-the-Regularized-Leader

𝑥(&) = argmax
!∈+

	⟨𝑈(&), 𝑥⟩ −
1
𝜂
𝜓(𝑥)	

Depending on the choice of strongly convex regularizer 𝜓,
 solving the step above might be impractical



Follow-the-Regularized-Leader

𝑥(&) = argmax
!∈+

	⟨𝑈(&), 𝑥⟩ −
1
𝜂
𝜓(𝑥)	

Depending on the choice of strongly convex regularizer 𝜓,
 solving the step above might be impractical

Example: if 𝜓 is the squared Euclidean distance, then the solution can 
be found in polynomial time but it is complicated and expensive in 

practice!



Efficient Regularizers

Idea: construct regularizers that mimic the structure of the 
tree-form decision problem

𝑏J 𝑏e

𝑏f 𝑏g

Local 
reg. 𝜓-

Local 
reg. 𝜓<

Strategy
(in sequence form)

Then is strongly convex, and the soluaon to the FTRL 
problem can be computed in a borom-up fashion
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Efficient Regularizers

Idea: construct regularizers that mimic the structure of the 
tree-form decision problem

𝑏J 𝑏e

𝑏f 𝑏g

Local 
reg. 𝜓-

Local 
reg. 𝜓<

Dilated regularizers

𝜓 𝑥 ≔ 𝜓J 𝑏J, 𝑏e + 𝑏J ⋅ 𝜓e 𝑏f, 𝑏g

𝑏J

𝑏e

𝑏J𝑏f

𝑏J𝑏g
Strategy
(in sequence form)

𝑥 =
Where 𝑓- and 𝑓< are local strongly convex regularizers 
(e.g., negaave entropy)

Then is strongly convex, and the solution to the FTRL 
problem can be computed in a bottom-up fashion



No-Regret Algorithms for EFGs

Different conceptual approaches exist:

Conversion to a single simplex of 
convex combinations of vertices

Decomposition into local decision 
problem over actions at each 

decision point

Use general convex optimization 
tools (e.g., FTRL)

Exploits structure 
of problem and 
specific learning 
algorithm

Less specialized; 
general tool

For large games, learning-based methods (+ function 
approximation) are today the scalable state of the art

Overall: kernelization gives better theoretical 
bounds on the regret

CFR gives better empirical performance


