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- Set of bidders  competing for one item for sale.N = {1,2,…, n}

- Each bidder has a value or valuation (“willingness to buy”).

- Value space and bidding space V, B ⊂ [0,1]

- The winner is the bidder with the highest bid (breaking ties uniformly at 
random).

- The winner pays her bid, the other bidders pay zero.
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How much should I bid?

I have incentives to underbid, but I also don’t 
want to lose the house, or at least not with 
high probability.

= £200,000
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The First-Price Auction Game

- The bidders choose their bids strategically, based on their values, and 
based on the information (or, beliefs) that they have about the values of 
the other bidders.

- Pure strategy: βi : V → B

- Ex-post utility:  ũi(b; vi) := {
1

|W(b) |
(vi − bi), if i ∈ W(b),

0, otherwise,
where W(b) = argmaxj∈Nbj
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An equilibrium of this game is a stable state in which no bidder wants to change their bidding strategy 
unilaterally. 

This is called a Bayes-Nash Equilibrium.



Bayes-Nash Equilibrium

- A strategy profile  is an ε-approximate pure Bayes-Nash 
Equilibrium if for any bidder , any value , and any bid :





We refer to a 0-approximate PBNE as an exact PBNE

β = (β1, …, βn)
i ∈ N vi ∈ V b ∈ B

ui(βi(vi), β−i; vi) ≥ ui(b, β−i; vi) − ε
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Quick Detour: PPAD
• PPAD: Polynomial Parity Argument on a Directed Graph  

[Papadimitriou 1994].

• A class of total search problems, i.e., problems for which a solution is 
guaranteed to exist.

• Membership in PPAD indicates that there is a certain inefficient path-
following algorithm for finding a solution. 

• PPAD-hardness is evidence that the problem is computationally intractable.

• e.g., at least as hard as finding mixed Nash equilibria in normal form 
games, market equilibria in exchange markets, etc. 
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PPAD-completeness

• PPAD-membership: New proof of existence via Brouwer’s fixed point 
theorem. Brouwer function is polynomially continuous. 


• PPAD-hardness: Reduction from -Generalized Circuit, a known PPAD-
complete problem [Chen, Deng, and Teng 2009, Rubinstein 2018]. 


• In fact we first show that -Generalized Circuit is still PPAD-complete, 
even when restricted to a very small set of gates.

ε

ε
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• NP-membership: Compute a bidder’s expected utility given a strategy 
profile and her value using dynamic programming, use it to verify 
certificates.

• NP-hardness: Reduce from the CIRCUIT-SAT problem.
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- Mixed strategy:   (distribution over bids) βi : V → Δ(B)

- Solution concept: (ε-approximate) Mixed Bayes-Nash Equilibrium

- Mixed strategies restore continuity  existence of a MBNE⇒

- Computing an ε-MBNE in a DFPA is a total search problem.
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ε
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Continuous Discrete
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PPAD-completeness

• PPAD-membership: We use our equivalence result to translate to the 
CFPA setting, which is in PPAD by [FGHLP23].

• PPAD-hardness: Reduction from the PPAD-complete problem PURE-
CIRCUIT [DFHM22].
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The iid Setting

- Consider the setting of iid prior beliefs.

- Solution concept: symmetric ε-MBNE

- Polynomial Time Approximation Scheme (PTAS): An algorithm that 
computes an ε-approximate solution to a problem in time polynomial to 
the inputs, but possibly exponential in 1/ε.
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Continuous Priors Discrete Priors
Theorem [FGHK24]: Deciding the  
existence of an ε-PBNE with subjective  
priors is NP-complete.

Theorem [FGHLP23]: Computing an  
ε-PBNE with subjective priors is  
PPAD-complete.

Theorem [FGHK24]: Computing an  
ε-MBNE with subjective priors is  
PPAD-complete.

Theorem [FGHK24]: The problem of  
computing an ε-MBNE with iid priors 
admits a PTAS. 
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The iid Setting
Proof Sketch
1. Prove existence of a symmetric and monotone (exact) MBNE in DFPA with iid priors.

2. Formulate a system of polynomial inequalities representing the equilibrium, to which we 
can use a result from Grigor’ev and Vorobjov [GV88] to achieve a solution that is δ-near to 
a feasible one. 

i) Use symmetry to remove exponential dependency on .|N |

ii) Shrink the bidding space to have size , show mapping from approximate 
MBNE in the original space to approximate MBNE in the reduced space.

O(1/ε)

iii) Use monotonicity to succinctly represent the support of the strategies.

3. Round the solution achieved in Step 2 so that it corresponds to a feasible set of 
strategies, provide a bound on the approximation factor of the MBNE.

caveat: exponential in |N | , |B | , |V |
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