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Learning-Augmented Algorithms
• Tension between classic analysis of algorithms and machine learning:

• Worst-case analysis provides robust guarantees, but often too pessimistic

• Machine learning algorithms work well, but lack robustness
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Learning-Augmented Algorithms
• Ideal algorithm with predictions: 
• Achieve optimal performance guarantees when predictions are accurate, 

without sacrificing worst-case guarantees when they are arbitrarily bad
• Framework originally proposed by Mahdian, Nazerzadeh, and Saberi [EC ‘07]
• Evaluation measures proposed by Lykouris and Vassilvitskii [ICML ’18, JACM ’21]:
• Robustness: worst-case performance guarantee
• Consistency: worst-case performance for instances with accurate prediction

• This provides a natural refinement of worst-case analysis
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https://algorithms-with-predictions.github.io/



Learning-Augmented Mechanism Design
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Algorithmic Game Theory papers



Online Auctions for a Single Good

• Each bidder announces their arrival and departure and reports their bid
• A bidder can receive the good only during their true active interval
• Bidders can announce a delayed arrival time and an earlier departure time
• Bidders can also arbitrarily misreport their value when they bid
• The auctioneer must make irrevocable decisions based only on bids from agents that 

have already arrived, aiming to maximize revenue

𝑏! = 300 𝑏" = 550 𝑏# = 200 𝑏$ = 501

𝑣" = 500 𝑣# = 200 𝑣$ = 600𝑣! = 300
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Connection to Secretary Problem

• If the arrival-departure intervals are disjoint, this closely resembles secretary problem
• The goal there is to maximize the probability of choosing maximum value agent
• Two crucial differences for secretary problem mechanisms:

• The mechanism only benefits if the highest value agent is selected
• The decisions of the mechanism depend only on the ranking of agent values

• The design space for online auctions is richer (so, harder to prove impossibility results)
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Online Auctions for a Single Good
• The ”type” 𝜽𝒊 of each bidder 𝑖 is determined by: 
• an arrival time 𝒂𝒊 and departure time 𝒅𝒊 ≥ 𝑎"
• a value 𝒗𝒊 for the good being sold

• The utility of bidder 𝑖 is equal to:
• 𝒗𝒊 − 𝒑, if they receive the good at price 𝑝 within [𝒂𝒊, 𝒅𝒊]
• ≤ 𝟎, otherwise

• The bidder can announce a later arrival, an earlier departure, and bid 𝒃𝒊 ≠ 𝒗𝒊
• Value-strategyproofness: it is a dominant strategy to report true value
• Time-strategyproofness: it is a dominant strategy to report true arrival/departure
• Adversary chooses active intervals 𝑰 = {(𝒂𝟏, 𝒅𝟏), 𝒂𝟐, 𝒅𝟐 , … (𝒂𝒏, 𝒅𝒏)} and a set 𝑽 of 
𝑛 bidder values. Each value is then assigned to a time interval uniformly at random
• Objective is to maximize expected revenue over the random arrival 



Online Auctions for a Single Good
• In the offline setting, where all bidders are present at the same time:
• it is impossible to extract a revenue approximating the highest value, 𝒗(𝟏)
• But, second-price auction revenue is equal to the second highest value, 𝒗(𝟐) 

• Can we approximate second highest value, 𝒗(𝟐), in online setting [HKP ‘04]?
• There exists a strategyproof auction that achieves a 0.25-approximation
• No strategyproof auction can achieve better than 0.66-approximation
• We prove a tight lower bound of 0.25 for a large family of auctions

• [HKP ‘04] also considered value (social welfare) maximization, w.r.t., 𝒗(𝟏)
• There exists a strategyproof auction that achieves a 𝟏/𝒆-approximation
• No strategyproof auction can achieve better than 0.5-approximation
• Correa, Duetting, Fischer, and Schewior [EC ’19] recently showed 𝟏/𝒆 is tight



Online Auctions with Predictions for a Single Good
• We are provided with a prediction , >𝒗(𝟏),  regarding the highest value, 𝒗(𝟏)
• Goal: design an online revenue-maximizing auction using this prediction 
• An auction is 𝜷-robust if its expected revenue is always at least 𝜷 ⋅ 𝒗(𝟐)

• An auction is 𝜶-consistent if its expected revenue is at least 𝜶 ⋅ 𝒗(𝟏) whenever 
the prediction is accurate, i.e., 𝒗(𝟏) = >𝒗(𝟏)

• What are the best (𝛼, 𝛽) pairs achievable by strategyproof online auctions 
augmented with a prediction >𝒗(𝟏) regarding the highest bidder value?
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Online Auctions with Predictions for a Single Good
• We propose an auction that guarantees 𝜶-consistency and 𝟏(𝜶

𝟐

𝟒  - robustness 

• The designer can choose the value of the confidence parameter 𝜶 ∈ 𝟎, 𝟏
• We show that this tradeoff is optimal within a large family of auctions



Three-Phase Auction for Disjoint Intervals

Simple case: if all active intervals are disjoint, we get a threshold-price auction
The phases:

1. Learning phase: only observe bids, never allocate item
2. Prediction phase: post maximum of prediction and highest bid so far
3. Highest-so-far phase: post highest bid so far

Phase 2 is skipped if prediction is shown to be inaccurate during phase 1

max( 2𝑣(+), 𝑣./0) 𝑣./0∞



Three-Phase Auction for Disjoint Intervals

Phase lengths depend on the choice of confidence parameter 𝛼 ∈ [0,1]
Bidders are ordered by their departure time

The transition to the second phase takes place after 𝑖% =
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Three-Phase Auction with Overlapping Intervals

Allocation rule:
• Like before, there are three phases, each with a threshold price 𝝉
• The winner is determined as soon as an active bidder has value at least 𝜏 
• If there are multiple such active bidders, higher priority is given to bidders 

with an earlier arrival time (ties broken arbitrarily)
• The good is always allocated to the winner at the time of their departure

𝑣./0∞ max( 2𝑣(+), 𝑣./0)

Determined based on 
departed bidder values



Three-Phase Auction with Overlapping Intervals

Payment rule:
• The winning bidder, 𝑖∗, pays at most 𝝉, but may end up paying less
• If winner 𝑖∗	secures item during Phase 2 and remains active in Phase 3:
• Simulate allocation rule with 𝑖∗ removed to get winner 𝑖′ and price 𝜏′
• If 𝑖′ is inactive in Phase 3 or has lower priority than 𝑖∗, 𝒊∗pays price 𝝉′
• Else 𝒊∗ pays price 𝝉

𝑣./0∞ max( 2𝑣(+), 𝑣./0)



Impossibility Result (with Predictions)
• The robustness-consistency trade-off that we achieve is optimal over any 

auction in the Prediction-or-Previously-Seen family
• The price posted can be the prediction, a previously seen bid, or infinite
• The proof uses an interchange argument reducing any such auction to ours



Impossibility Result (without Predictions)
• The 0.25 approximation is optimal for Up-To-Max-Previously-Seen auctions
• The price posted can be at most the maximum bid seen so far or infinite
• The proof uses tools from Correa, Duetting, Fischer, and Schewior [EC ’19] 
• Unlike their impossibility result, ours needs to use strategyproofness



Open Problems and Future Directions
• General lower bounds for the single-good case
• What about online auctions for multiple goods?
• Many other open problems in learning-augmented mechanism design



Other Recent Learning-Augmented Work
• Online Algorithms:
• Allocating items that arrive over time, aiming to maximize fairness, with S. Banerjee, A. Gorokh, and B. Jin  (SODA 2022)
• Allocating a fixed budget on public goods in a dynamic fashion, with S. Banerjee, S. Hossain, B. Jin, E. Micha, and N. Shah (IJCAI 2023)

• Mechanisms in Strategic Settings:
• Strategyproof mechanisms for facility location problems, with P. Agrawal, E. Balkanski, T. Ou, and X. Tan (EC 2022)
• Improved price of anarchy bounds in decentralized systems, with K. Kollias, A. Sgouritsa, and X. Tan (EC 2022)
• Strategyproof mechanisms for scheduling to minimize makespan, with E. Balkanksi and X. Tan (ITCS 2023)
• Online mechanism design with predictions, with E. Balkanski, X. Tan, and C. Zhu (EC 2024)
• Randomized strategic facility location with predictions, with E. Balkanski and G. Shahkarami (Submitted 2024)
• Clock auctions augmented with unreliable advice, with D. Schoepflin and X. Tan (Submitted 2024)

• Distortion in Voting:
• Optimal metric distortion with predictions, with B. Berger, M. Feldman, and X. Tan  (EC 2024)

• Robust Algorithmic Recourse in Machine Learning: 
• Learning-augmented robust algorithmic recourse, with K. Kayastha and S. Jabbari  (Submitted 2024)
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