Online Mechanism Design with Predictions

To appear at **EC 2024** (exemplary track award for theory track)

Vasilis Gkatzelis Drexel University and Google Research

Eric Balkanski Columbia University

Xizhi Tan Drexel University

Cherlin Zhu Columbia University

Learning-Augmented Algorithms

• **Tension** between classic analysis of algorithms and machine learning:

Machine Learning Algorithms

- Worst-case analysis provides robust guarantees, but often too pessimistic
- Machine learning algorithms work well, but lack robustness

Learning-Augmented Algorithms

- Ideal algorithm with predictions:
 - Achieve optimal performance guarantees when predictions are accurate, without sacrificing worst-case guarantees when they are arbitrarily bad
- Framework originally proposed by Mahdian, Nazerzadeh, and Saberi [EC '07]
- Evaluation measures proposed by Lykouris and Vassilvitskii [ICML '18, JACM '21]:
 - Robustness: worst-case performance guarantee
 - **Consistency**: worst-case performance for instances with accurate prediction
- This provides a natural **refinement** of worst-case analysis

https://algorithms-with-predictions.github.io/

Algorithms with Predictions paper list further material how to contribute about	
07 '09 '10 '17 '18 '19 '20 '21 '22 '23 '24 Newest first ▼ 209 papers	
Complexity Classes for Online Problems with and without Predictions Berg, Boyar, Favrholdt, Larsen arXiv '24 online	data structure
Online Lead Time Quotation with Predictions Huo, Tianming; Cheung, Wang Chi SSRN '24 competitive analysis lead time quotation online scheduling	online
Learning-Augmented Priority Queues Benomar, Coester (arXiv '24) data structure priority queue	running time
A Simple Learning-Augmented Algorithm for Online Packing with Concave Objectives Grigorescu, Lin, Song (arXiv '24) (knapsack) (online) (packing) (scheduling)	AGT
Warm-starting Push-Relabel Davies, Vassilvitskii, Wang (arXiv '24) (max flow) (running time)	differential privacy
Online Classification with Predictions Raman, Tewari arXiv '24 learning online	prior/related work
Equilibria in multiagent online problems with predictions Istrate Bonchis Bogdan (prViv/24) ACT (multiagent online) (root or huv)	allocation
	assignment problem
Online bipartite matching with imperfect advice Choo, Gouleakis, Ling, Bhattacharyya (arXiv '24) allocation matching online	auctions
PCF Learned Sort: a Learning Augmented Sort Algorithm with O(n log log n) Expected Complexity Sato, Matsui arXiv '24 running time sorting	beyond NP hardness
Competitive strategies to use "warm start" algorithms with predictions Srinivas, Blum (arXiv '24) (multiple predictions) (online)	bidding
Non-clairvoyant Scheduling with Partial Predictions Benomar, Perchet (arXiv '24) online scheduling	buffer sharing
	caching
Cost-Driven Data Replication with Predictions Zuo, Tang, Lee (arXiv '24) SPAA '24 data replication online	caching/paging
Algorithms for Caching and MTS with Reduced Number of Predictions Sadek, Elias arXiv '24 caching/paging MTS online	causal structure learning

Algorithmic Game Theory papers

Algorithms with Predictions paper list further material how to contribute about	
Newest first → 13 papers	RESET
Equilibria in multiagent online problems with predictions Istrate, Bonchis, Bogdan (arXiv '24) (AGT) (multiagent) (online) (rent-or-buy)	data structure
MAC Advice for Facility Location Mechanism Design Barak, Gupta, Talgam-Cohen arXiv '24 AGT facility location mechanism design	online
To Trust or Not to Trust: Assignment Mechanisms with Predictions in the Private Graph Model Colini-Baldeschi, Klumper, Schäfer, Tsikiridis (arXiv '24) (AGT) (assignment problem) (graph problems)	running time
Randomized learning-augmented auctions with revenue guarantees Caragiannis, Kalantzis (arXiv '24) (AGT) (auctions) (mechanism design)	AGT 😒
Online Mechanism Design with Predictions Balkanski, Gkatzelis, Tan, Zhu (arXiv '23) (AGT) (auctions) (mechanism design)	differential privacy
Competitive Auctions with Imperfect Predictions Lu, Wan, Zhang arXiv '23 AGT auctions	prior/related work
Ontimal Metric Distortion with Predictions Render Feldman Gkatzelis Tan (rYiv '23) AGT (metric distortion)	allocation
	assignment problem
Bichtena Mutudimensional Mechanism Design with Side Information Balcan, Prasad, Sandholm arXiv 23 AG1 mechanism design	auctions
Mechanism Design With Predictions for Obnoxious Facility Location Istrate, Bonchis (arXiv '22) (AGT) (mechanism design)	beyond NP hardness
Strategyproof Scheduling with Predictions Balkanski, Gkatzelis, Tan arXiv '22 (ITCS '23 AGT scheduling	bidding
Mechanism Design with Predictions Xu, Lu (arXiv '22) (JJCAI '22) AGT (auctions) (scheduling)	buffer sharing
	caching
arXiv 22 AGT	caching/paging
Learning-Augmented Mechanism Design: Leveraging Predictions for Facility Location Agrawal, Balkanski, Gkatzelis, Ou, Tan arXiv '22 EC '22 AGT network design	causal structure learning
	causality

Online Auctions for a Single Good

- Each bidder announces their arrival and departure and reports their bid
- A bidder can receive the good only during their true active interval
- Bidders can announce a **delayed arrival** time and an **earlier departure** time
- Bidders can also **arbitrarily misreport** their value when they bid
- The auctioneer must make irrevocable decisions based only on bids from agents that have already arrived, aiming to maximize **revenue**

[Hajiaghayi-Kleinberg-Parkes EC '04]

Connection to Secretary Problem

- If the arrival-departure intervals are disjoint, this closely resembles secretary problem
- The goal there is to maximize the probability of choosing maximum value agent
- Two crucial differences for secretary problem mechanisms:
 - The mechanism only benefits if the highest value agent is selected
 - The decisions of the mechanism **depend only on the ranking** of agent values
- The design space for online auctions is richer (so, harder to prove impossibility results)

Online Auctions for a Single Good

- The "type" θ_i of each bidder i is determined by:
 - an arrival time a_i and departure time $d_i \ge a_i$
 - a value v_i for the good being sold
- The **utility** of bidder *i* is equal to:
 - $v_i p$, if they receive the good at price p within $[a_i, d_i]$
 - \leq **0**, otherwise
- The bidder can announce a later arrival, an earlier departure, and bid $b_i \neq v_i$
- Value-strategyproofness: it is a dominant strategy to report true value
- Time-strategyproofness: it is a dominant strategy to report true arrival/departure
- Adversary chooses active intervals $I = \{(a_1, d_1), (a_2, d_2), ..., (a_n, d_n)\}$ and a set V of n bidder values. Each value is then assigned to a time interval uniformly at random
- Objective is to maximize expected revenue over the random arrival

Online Auctions for a Single Good

- In the offline setting, where all bidders are present at the same time:
 - it is impossible to extract a revenue approximating the highest value, $v_{(1)}$
 - But, second-price auction revenue is equal to the second highest value, $v_{(2)}$
- Can we approximate **second highest value**, $v_{(2)}$, in online setting [HKP '04]?
 - There exists a strategyproof auction that achieves a **0.25-approximation**
 - No strategyproof auction can achieve better than **0.66-approximation**
 - We prove a tight lower bound of 0.25 for a large family of auctions
- [HKP '04] also considered value (social welfare) maximization, w.r.t., $v_{(1)}$
 - There exists a strategyproof auction that achieves a 1/e-approximation
 - No strategyproof auction can achieve better than **0.5-approximation**
 - Correa, Duetting, Fischer, and Schewior [EC '19] recently showed 1/e is tight

Online Auctions with Predictions for a Single Good

- We are provided with a prediction , $\widetilde{v}_{(1)}$, regarding the highest value, $v_{(1)}$
- Goal: design an online revenue-maximizing auction using this prediction
- An auction is β -robust if its expected revenue is always at least $m eta \cdot m v_{(2)}$

robustness(M) =
$$\min_{V,I,\tilde{v}_{(1)}} \frac{\mathbb{E}_{\Theta \sim \mu(V,I)} \left[\operatorname{Rev} \left(M(\Theta, \tilde{v}_{(1)}) \right) \right]}{v_{(2)}}$$

• An auction is α -consistent if its expected revenue is at least $\alpha \cdot v_{(1)}$ whenever the prediction is accurate, i.e., $v_{(1)} = \tilde{v}_{(1)}$

consistency(M) =
$$\min_{V,I} \frac{\mathbb{E}_{\Theta \sim \mu(V,I)} \left[\operatorname{Rev} \left(M(\Theta, \boldsymbol{v}_{(1)}) \right) \right]}{\boldsymbol{v}_{(1)}}$$

• What are the best (α, β) pairs achievable by strategyproof online auctions augmented with a prediction $\tilde{v}_{(1)}$ regarding the highest bidder value?

Online Auctions with Predictions for a Single Good

- We propose an auction that guarantees α -consistency and $\frac{1-\alpha^2}{4}$ robustness
- The designer can choose the value of the **confidence parameter** $\alpha \in [0, 1]$
- We show that this tradeoff is **optimal within a large family of auctions**

Three-Phase Auction for Disjoint Intervals

Simple case: if **all active intervals are disjoint**, we get a threshold-price auction The phases:

- 1. Learning phase: only observe bids, never allocate item
- 2. Prediction phase: post maximum of prediction and highest bid so far
- 3. Highest-so-far phase: post highest bid so far

Phase 2 is skipped if prediction is shown to be inaccurate during phase 1

Three-Phase Auction for Disjoint Intervals

Phase lengths depend on the choice of **confidence parameter** $\alpha \in [0,1]$ Bidders are **ordered by their departure time**

The transition to the second phase takes place after $i_1 = \frac{1-\alpha}{2}n$ departures The transition to the third phase takes place after $i_2 = \frac{1+\alpha}{2}n$ departures

Allocation rule:

- Like before, there are three phases, each with a **threshold price** au
- The winner is determined as soon as an active bidder has value at least au
- If there are multiple such active bidders, higher priority is given to bidders with an earlier arrival time (ties broken arbitrarily)
- The good is always allocated to the winner **at the time of their departure**

Three-Phase Auction with Overlapping Intervals

Payment rule:

- The winning bidder, i^* , pays **at most** τ , but may end up paying **less**
- If winner *i*^{*} secures item during Phase 2 and remains active in Phase 3:
 - Simulate allocation rule with i^* removed to get winner i' and price au'
 - If i' is inactive in Phase 3 or has lower priority than i^* , i^* pays price τ'
 - Else i^* pays price au

Impossibility Result (with Predictions)

- The robustness-consistency trade-off that we achieve is **optimal** over any auction in the **Prediction-or-Previously-Seen** family
- The price posted can be the **prediction**, a **previously seen bid**, or **infinite**
- The proof uses an **interchange argument** reducing any such auction to ours

Impossibility Result (without Predictions)

- The 0.25 approximation is optimal for Up-To-Max-Previously-Seen auctions
- The price posted can be at most the maximum bid seen so far or infinite
- The proof uses tools from Correa, Duetting, Fischer, and Schewior [EC '19]
- Unlike their impossibility result, ours needs to use strategyproofness

Open Problems and Future Directions

- General lower bounds for the single-good case
- What about online auctions for multiple goods?
- Many other open problems in learning-augmented mechanism design

Other Recent Learning-Augmented Work

- Online Algorithms:
 - Allocating items that arrive over time, aiming to maximize fairness, with S. Banerjee, A. Gorokh, and B. Jin (SODA 2022)
 - Allocating a fixed budget on public goods in a dynamic fashion, with S. Banerjee, S. Hossain, B. Jin, E. Micha, and N. Shah (IJCAI 2023)

• Mechanisms in Strategic Settings:

- Strategyproof mechanisms for facility location problems, with P. Agrawal, E. Balkanski, T. Ou, and X. Tan (EC 2022)
- Improved price of anarchy bounds in decentralized systems, with K. Kollias, A. Sgouritsa, and X. Tan (EC 2022)
- Strategyproof mechanisms for scheduling to minimize makespan, with E. Balkanksi and X. Tan (ITCS 2023)
- Online mechanism design with predictions, with E. Balkanski, X. Tan, and C. Zhu (EC 2024)
- Randomized strategic facility location with predictions, with E. Balkanski and G. Shahkarami (Submitted 2024)
- Clock auctions augmented with unreliable advice, with D. Schoepflin and X. Tan (Submitted 2024)
- Distortion in Voting:
 - Optimal metric distortion with predictions, with B. Berger, M. Feldman, and X. Tan (EC 2024)
- Robust Algorithmic Recourse in Machine Learning:
 - Learning-augmented robust algorithmic recourse, with K. Kayastha and S. Jabbari (Submitted 2024)

Supported by NSF grant "Mechanisms with Predictions" with co-PI Eric Balkanski