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Classical Learning

We observe data  where   and  

Goal: Find    that minimizes

(x, y), x ∼ P 𝔼[y |x] = f(x)

̂f

errP( ̂f ) ≜ 𝔼x∼P [( f(x) − ̂f(x))2]
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This makes sense only when Q ≪ P
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 [SSK12, SK12, SKM07, Kpo17, QB13, KM18, CMM10, MPW23, PMW22]: Assume  β < ∞
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P(x) = 0, Q(x) > 0
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Transfer Learning
Observation.

1. Truncated Statistics [DGTZ18, KTZ19, Ple20, NP20, DKTZ21,…]    

2. Some classification settings [KM18, HK19] 

3. Linear regression with distribution shift [LHL21, GTF+23, ZBGS22, WZB+22] 

 There are cases where   but transfer is possible
dQ
dP r

→ ∞



Our Result

Theorem [K, Zadik, Zampetakis ’24]

Let    and     be degree-   polynomials and  a log-concave measure. Then: f ̂f k μ

errQ( ̂f ) ≤ h(k) ⋅
dQ
dμ

∞

⋅
dP
dμ

k

∞

⋅ errP( ̂f )

h(k) ≤ kk

μ ∝ exp(−convex)



Intuition

Q
P

μ



Intuition

Q
P β ⋅ μ



Our Result

Theorem [K, Zadik, Zampetakis ’24]

Let    and     be degree-   polynomials and  a log-concave measure. Then: f ̂f k μ

errQ( ̂f ) ≤ h(k) ⋅
dQ
dμ

∞

⋅
dP
dμ

k
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new  measure of divergence
sufficient for transferability of polynomials
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inverse density ratio

Comparison with Change of Measure



Our Result

Theorem [K, Zadik, Zampetakis ’24]

Let    and     be degree-   polynomials and  a log-concave measure. Then: f ̂f k μ

errQ( ̂f ) ≤ h(k) ⋅
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⋅
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∞
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Can we have a similar result for neural networks?



Example: Target Function

P

, not a polynomialf : ℝ2 → ℝ



Example: Polynomial Estimator

, polynomial estimator̂f : ℝ2 → ℝ

P



Example: Neural Networks

, NN estimator trained from P with SGD̂f : ℝ2 → ℝ

P



Our Result

Theorem [K, Zadik, Zampetakis ’24]

Let    and     be degree-   polynomials and  a log-concave measure. Then: f ̂f k μ

errQ( ̂f ) ≤ h(k) ⋅
dQ
dμ

∞

⋅
dP
dμ

k

∞

⋅ errP( ̂f )

Polynomials seem to transfer better than NNs 
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Proof Idea
Anti-concentration implies Extrapolation

g ≜ ( f − ̂f )2

I2

μ(I2) = Pr
μ

[g < 2γ] = O((2γ)1/k) ≪ 1

I2I2



Proof Idea
Anti-concentration implies Extrapolation

g ≜ ( f − ̂f )2 𝔼μ[g] vs 𝔼P[g]

  

  

  

 

  



Proof Idea
Anti-concentration implies Extrapolation

g ≜ ( f − ̂f )2 𝔼μ[g] ≤ β ⋅ 𝔼P[g]

  

  

  

 

  



Comparison with Linear Regression (I)

Is polynomial regression with distribution shift hard?

“Just learn  coefficients and transfer without bounded ratios”nk

Vandermonde matrix in high-dimensions is poorly understood
How to bound the condition number?



Transfer is related to 

Rigorous for specific estimators in specific settings [LHL21, GTF+23]

fθ(x) = θ⊤x

errP( ̂θ) = (θ − ̂θ)⊤ 𝔼P[X⊤X] (θ − ̂θ)

errQ( ̂θ) = (θ − ̂θ)⊤ 𝔼Q[X⊤X] (θ − ̂θ)

𝔼Q[xx⊤]𝔼P[xx⊤]−1

Comparison with Linear Regression (II)
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Transfer is “related” to 

Rigorous for specific estimators in specific settings [LHL21, GTF+23]

fθ(x) = θ⊤x

errP( ̂θ) = (θ − ̂θ)⊤ 𝔼P[X⊤X] (θ − ̂θ)

errQ( ̂θ) = (θ − ̂θ)⊤ 𝔼Q[X⊤X] (θ − ̂θ)

𝔼Q[xx⊤]𝔼P[xx⊤]−1

How to control the transfer cost in general?

errQ( ̂θ) ≤
λmax(ΣQ)
λmin(ΣP)

⋅ errP( ̂θ)

Comparison with Linear Regression (II)



Our Result
Theorem [K, Zadik, Zampetakis ’24]

Let    and     be degree-   polynomials and  a log-concave measure. Then: f ̂f k μ

errQ( ̂f ) ≤ h(k) ⋅
dQ
dμ

∞

⋅
dP
dμ

k

∞

⋅ errP( ̂f )

+ Arbitrary polynomials 
+ Intuitive, not algebraic 
+ Extends to Boolean domains
 -  Needs log-concave bridge



Future Work
1. Extensions to classification

2. Transferability is a property of 

        a. Model Class 

        b. P, Q

        c. Training Algorithm (Which algorithms could help transfer?) 

3. Transfer Learning in Other Domains (Adaptive Environments) 
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Thank You!


