
A proof of the Nisan-Ronen Conjecture

Archimedes Workshop
3. July 2024

Giorgos Christodoulou
Aristotle University of Thessaloniki, Greece

Elias Koutsoupias
University of Oxford, UK

Annamária Kovács
Goethe University, Frankfurt M., Germany

July 6, 2024

1 / 24



Introduction

Unrelated Scheduling

Input: m tasks

n machines


t11 t12 · · · t1m
t21 t22 · · · t2m
...

...
...

tn1 tn2 · · · tnm



tij : running time of task j on machine i

Output: xij ∈ {0, 1} an allocation of tasks to machines that minimizes the

makespan

makespan = max
i

finish time i

2 / 24



Introduction

Unrelated Scheduling

Input: m tasks

n machines


t11 t12 · · · t1m
t21 t22 · · · t2m
...

...
...

tn1 tn2 · · · tnm



tij : running time of task j on machine i

Output: xij ∈ {0, 1} an allocation of tasks to machines that minimizes the

makespan

makespan = max
i

finish time i

3 / 24



Introduction

Truthful scheduling mechanisms

weakly monotone scheduling algorithm + truthful payment

• We are interested only in weakly monotone (WMON) scheduling algorithms.

• for exactly these exist payments to the machines

so that each machine i reports the running times tij truthfully

[Saks, Yu EC05, Bikhchandani et Al. Econometrica 2006]

Definition: The scheduling algorithm is weakly monotone, if for every machine i , for

every fixed bids of the other machines, for any two bid vectors (tij)j∈[m], (t
′
ij)j∈[m] and

the corresponding allocations x ̸= x ′ holds that
∑m

j=1(x
′
ij − xij) · (t′ij − tij) ≤ 0.

4 / 24



Introduction

The Vickrey-Clarke-Groves (VCG) mechanism

• the simplest truthful mechanism gives each task

independently to the fastest machine for that task

1− 1− 1− 1− · · · 1−

1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
...

. . .
...

1 1 1 1 · · · 1



• VCG is n-approximative for makespan minimization

5 / 24



Result

The Nisan-Ronen conjecture
No truthful mechanism for unrelated scheduling can have a better than n

approximation of the optimal makespan (indep. of computational power).

[STOC’99, Games and Economic behavior 2001]

Lower bounds for truthful makespan approximation:

2 [Nisan, Ronen 1999]

1 +
√
2 [Christodoulou, Koutsoupias, Vidali Algorithmica 2009]

1 + φ ≈ 2.618 [Koutsoupias, Vidali Algorithmica 2012]

n for anonymous mechanisms [Ashlagi, Dobzinski, Lavi Math.Op.Res. 2012]

2.755 [Giannakopoulos, Hammerl, Poças SAGT20]

3 [Dobzinski, Shaulker 2020]
√
n − 1 + 1 [Christodoulou, Koutsoupias, K. FOCS21]

Our result: No truthful mechanism for unrelated scheduling with n

machines has better than n approx. factor for the makespan objective.
[STOC23]

6 / 24



Preliminaries

Preliminaries I – graph and multigraph inputs

• we allow only 2 machines for each task:

0.

1.

2.

.

.

.

n.


0 0 . . . 0
1 ∞ . . . ∞
∞ 1 . . . ∞
...

. . .
...

∞ ∞ . . . 1


= t

s1

s2
.
.
.

sn 2
3

4
1

0

• the tasks can be modelled as edges, and machines as vertices of a graph

• most of our tasks will have a 0 value on one of their machines (trivial tasks)

7 / 24



Preliminaries

Preliminaries II – weak monotonicity

• the geometry of WMON allocations

(for one machine and two tasks, fixed input of other machines)

t1

t2

R{1,2}

R∅

t1

t2

R{1,2}

R∅

t1

t2

R{1,2}

R∅

• the boundary ψj is the highest tj value (supremum) that still receives task j

t1

t2
ψ1[t2]

R{1,2}

R∅

t1

t2
ψ1[t2]

R{1,2}

R∅

t1

t2
ψ1[t2]

R{1,2}

R∅

8 / 24



Sketch of proof

Proof sketch

Recall: ψj is the highest tj value that player 0 still receives task j

0.

1.

2.

.

.

.

.

.

.

.

.

.

n.



0 0 . . . ψj . . . 0
1 ∞ . . . ∞ . . . ∞
∞ 1 . . . ∞ . . . ∞
...

. . .
...

... 1
...

...
. . .

...
∞ ∞ ∞ ∞ ∞ 1



= t

s1

s2
.
.
.

.

.

.

.

.

.

sn

Idea: Prove the existence of such a (partial) input so that...

A.
∑n

j=1 ψj ≥ n

B. and setting ψj for all j at once, player 0 still gets all tasks

Then: ALG =
∑n

j=1 ψj ≥ n, OPT = 1

9 / 24



Sketch of proof

Proof sketch

Recall: ψj is the highest tj value that still receives task j

0.

1.

2.

.

.

.

.

.

.

.

.

.

n.



ψ1 ψ2 . . . ψj . . . ψn

1 ∞ . . . ∞ . . . ∞
∞ 1 . . . ∞ . . . ∞
...

. . .
...

... 1
...

...
. . .

...
∞ ∞ ∞ ∞ ∞ 1



= t

s1

s2
.
.
.

.

.

.

.

.

.

sn

Idea: Prove the existence of such a (partial) input so that...

A.
∑n

j=1 ψj ≥ n

B. and setting ψj for all j at once, player 0 still gets all tasks

Then: ALG =
∑n

j=1 ψj ≥ n, OPT = 1

10 / 24



Sketch of proof

Part A: prove existence of tasks with
∑

j ψj ≥ n



0 0 0 ψj(sj) 0 0 0
1

1
1

sj
1

1
1



= t
s1
...

...

sn



0 0 0 tj 0 0 0
1

1
1

ψ−1(tj)
1

1
1



• consider boundary ψj as function of sj

• assume first ψj(sj) = c · sj

• then ψ−1
j (tj) = tj/c , and ...

•
ψj(1) + ψ−1

j (1) = c +
1

c
≥ 2.

s j

t j

(s )jψ
gets task s

t gets task j

j

1 

1 

11 / 24



Sketch of proof

Part A: prove existence of tasks with
∑

j ψj ≥ n



0 0 0 ψj(sj) 0 0 0
1

1
1

sj
1

1
1



= t
s1
...

...

sn



0 0 0 tj 0 0 0
1

1
1

ψ−1(tj)
1

1
1



• consider boundary ψj as function of sj

• assume first ψj(sj) = c · sj

• then ψ−1
j (tj) = tj/c , and ...

•
ψj(1) + ψ−1

j (1) = c +
1

c
≥ 2.

s j

t j

(s )jψ
gets task s

t gets task j

j

1 

1 

12 / 24



Sketch of proof

Part A: prove existence of tasks with
∑

j ψj ≥ n



0 0 0 ψj(sj) 0 0 0
1

1
1

sj
1

1
1



= t
s1
...

...

sn



0 0 0 tj 0 0 0
1

1
1

ψ−1(tj)
1

1
1



• consider boundary ψj as function of sj

• assume first ψj(sj) = c · sj

• then ψ−1
j (tj) = tj/c , and ...

•
ψj(1) + ψ−1

j (1) = c +
1

c
≥ 2.

s j

t j

(s )jψ
gets task s

t gets task j

j

1 

1 

13 / 24



Sketch of proof

Part A: prove existence of tasks with
∑

j ψj ≥ n

Rough idea:

• use a task for each pair of n + 1 machines

2
3

4
1

0

2
3

4
1

0

• modelling tasks as edges of a graph: start with a clique

• Sum up every ψij(1)∑
i

∑
j ̸=i

ψij(1) =
∑
i,j|i ̸=j

(ψij(1) + ψji (1)) ≥
(
n + 1

2

)
· 2 = n · (n + 1)

⇒ ∃ machine i with
∑

j ̸=i ψij(1) ≥ n

14 / 24



Sketch of proof

Part A: prove existence of tasks with
∑

j ψj ≥ n

Problem: ψij is not linear

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�

�
�
�
�

�
�
�

�
�
�

�
�
�
�

������������������������������������������������������
��������������������������������������������������

����������������������������������������������
����������������������������������
����������������

������������
��������������������
��������

ψ (z)

z1

1

Idea: integral∫ 1

0

(ψij + ψji ) dz ≥ 1=

∫ 1

0

2z dz

⇒ ∃z (ψij + ψji )(z) ≥ 2z

(mean value theorem)

⇒ ∃ z ∈ (0, 1] and ∃ machine i such that∑
j | j ̸=i

ψij(z) ≥ n · z

w.l.o.g. machine i = 0



0 0 ψj(z) 0 0

z
z

z
z

z


15 / 24



Sketch of proof

Problem: As we change these tasks to sj = z , the boundary functions ψ0j change.

Idea: multi-clique

j

i

0
z
′′

· · ·

0
z
′

· · ·

0
z
′′′0

z • use exp. many parallel tasks (edges) allover in the clique;

• fix task values for each edge to independent random
z ∈ (0, 1] and randomly to 0←→ z or to z ←→ 0;

• round down each ψe
ij to one of finitely many

step-functions;

• many parallel edges e between i and j have the same ψe
ij by pigeonhole;

let this be the single ψij ;

• choose z ∈ (0, 1] and machine i like above;

• many of the parallel edges will have value 0 for i , and the chosen z as fixed
random value...

• ... using that ψe
ij and the values of parallel tasks are independent

16 / 24



Sketch of proof

We have shown existence of a machine and tasks with
∑

j ψj(z) ≥ n · z

We call such a task set a nice star

0 0 ... 0 ... 0
z

z
. . .

z
. . .

z


→



ψ1(z) ψ2(z) ... ψj(z) ... ψn(z)
z

z
. . .

z
. . .

z


Part B: But why can we set them to ψj at once?

Good and bad examples:

t1

t2

ψ2
o

ψ1

box

t1

t2

ψ2
o
ψ1

box

t1

t2

ψ2

ψ1

non-box

t1

t3

t2

ψ1

ψ3

ψ2

box

t1

t3

t2

ψ1

ψ3

ψ2

non-box
17 / 24



Sketch of proof

Part B: change every 0 to ψj at once!

Theorem: If we have exp. many parallel tasks (edges) for each machine j

in a multistar, then it contains a star which is a box (unless approx =∞).
0 0 0 ψ1 0 0 ψ2 0 0 0 · · · 0 ψn 0 0 0
z z z z z

z z z z z
. . .

z z z z z



• for each satellite machine j we need many parallel tasks with the same ψj

and allover the same z

• by the above Theorem there exists a star which is a box, and we obtain:

ALG ≥
∑
j

ψj(z) ≥ n · z , OPT = z , approx ≥ n

18 / 24



Sketch of proof

Theorem: If we have exp. many parallel tasks (edges) for each machine j in a multistar,

then it contains a star which is a box (or approx = ∞).

Proof (intuition):

• induction on the number of satellites k = 2, . . . , n ;

• we use that all truthful mechanisms for 2 machines, 2 parallel tasks are known;

• induction step (k − 1) → k: assume {1, 2, . . . , k} is not a box (only its subsets)

t1

tk

t2

t1

tk

t2

t1

tk

t2

▶ in the ’blue’ points, if ψk(sk) were linear function, then it would have a

non-box subset for some sk
⇒ since ψk(sk) nonlinear, the allocation of task k is independent of tk′ of every

parallel task k ′

⇒ {1, 2, . . . , k ′} is a box

⇒ the multistar contains plenty of stars that are boxes
19 / 24



Sketch of proof

Theorem: If we have exp. many parallel tasks (edges) for each machine j in a multistar,

then it contains a star which is a box (or approx = ∞).

Proof (intuition):

• induction on the number of satellites k = 2, . . . , n ;

• we use that all truthful mechanisms for 2 machines, 2 parallel tasks are known;

• induction step (k − 1) → k: assume {1, 2, . . . , k} is not a box (only its subsets)

t1

tk

t2

t1

tk

t2

t1

tk

t2

▶ in the ’blue’ points, if ψk(sk) were linear function, then it would have a

non-box subset for some sk
⇒ since ψk(sk) nonlinear, the allocation of task k is independent of tk′ of every

parallel task k ′

⇒ {1, 2, . . . , k ′} is a box

⇒ the multistar contains plenty of stars that are boxes
20 / 24



Sketch of proof

Theorem: If we have exp. many parallel tasks (edges) for each machine j in a multistar,

then it contains a star which is a box (or approx = ∞).

Proof (intuition):

• induction on the number of satellites k = 2, . . . , n ;

• we use that all truthful mechanisms for 2 machines, 2 parallel tasks are known;

• induction step (k − 1) → k: assume {1, 2, . . . , k} is not a box (only its subsets)

t1

tk

tk′

▶ in the ’blue’ points, if ψk(sk) were linear function, then it would have a

non-box subset for some sk
⇒ since ψk(sk) nonlinear, the allocation of task k is independent of tk′ of every

parallel task k ′

⇒ {1, 2, . . . , k ′} is a box

⇒ the multistar contains plenty of stars that are boxes
21 / 24



Sketch of proof

Theorem: If we have exp. many parallel tasks (edges) for each machine j in a multistar,

then it contains a star which is a box (or approx = ∞).

Proof (intuition):

• induction on the number of satellites k = 2, . . . , n ;

• we use that all truthful mechanisms for 2 machines, 2 parallel tasks are known;

• induction step (k − 1) → k: assume {1, 2, . . . , k} is not a box (only its subsets)

t1

tk

tk′

▶ in the ’blue’ points, if ψk(sk) were linear function, then it would have a

non-box subset for some sk
⇒ since ψk(sk) nonlinear, the allocation of task k is independent of tk′ of every

parallel task k ′

⇒ {1, 2, . . . , k ′} is a box

⇒ the multistar contains plenty of stars that are boxes
22 / 24



Sketch of proof

Theorem: If we have exp. many parallel tasks (edges) for each machine j in a multistar,

then it contains a star which is a box (or approx = ∞).

Proof (intuition):

• induction on the number of satellites k = 2, . . . , n ;

• we use that all truthful mechanisms for 2 machines, 2 parallel tasks are known;

• induction step (k − 1) → k: assume {1, 2, . . . , k} is not a box (only its subsets)

t1

tk

tk′

▶ in the ’blue’ points, if ψk(sk) were linear function, then it would have a

non-box subset for some sk
⇒ since ψk(sk) nonlinear, the allocation of task k is independent of tk′ of every

parallel task k ′

⇒ {1, 2, . . . , k ′} is a box

⇒ the multistar contains plenty of k-stars that are boxes
23 / 24



Sketch of proof

Thank you!

24 / 24


	Introduction
	Result
	Preliminaries
	Preliminaries
	Sketch of proof
	Sketch of proof

