A proof of the Nisan-Ronen Conjecture

Archimedes Workshop 3. July 2024

Aristotle University of Thessaloniki, Greece

Elias Koutsoupias

University of Oxford, UK

Annamária Kovács

Goethe University, Frankfurt M., Germany

Unrelated Scheduling

```
m tasks
Input:
```

```
n \text{ machines} \ \begin{bmatrix} t_{11} & t_{12} & \cdots & t_{1m} \\ t_{21} & t_{22} & \cdots & t_{2m} \\ \vdots & \vdots & & \vdots \\ t_{n1} & t_{n2} & \cdots & t_{nm} \end{bmatrix}
```

 t_{ii} : running time of task j on machine i

Unrelated Scheduling

```
m tasks
Input:
```

```
n machines \begin{bmatrix} t_{11} & t_{12} & \cdots & t_{1m} \\ t_{21} & t_{22} & \cdots & t_{2m} \\ \vdots & \vdots & & \vdots \\ t_{n1} & t_{n2} & \cdots & t_{nm} \end{bmatrix}
```

 t_{ii} : running time of task j on machine i

Output: $x_{ii} \in \{0,1\}$ an allocation of tasks to machines that minimizes the makespan

$$makespan = \max_{i} finish time_{i}$$

Truthful scheduling mechanisms

weakly monotone scheduling algorithm + truthful payment

- We are interested only in weakly monotone (WMON) scheduling algorithms.
- for exactly these exist payments to the machines
 so that each machine i reports the running times t_{ij} truthfully

<u>Definition:</u> The scheduling algorithm is *weakly monotone*, if for every machine i, for every fixed bids of the other machines, for any two bid vectors $(t_{ij})_{j \in [m]}, (t'_{ij})_{j \in [m]}$ and the corresponding allocations $x \neq x'$ holds that $\sum_{j=1}^{m} (x'_{ij} - x_{ij}) \cdot (t'_{ij} - t_{ij}) \leq 0$.

The Vickrey-Clarke-Groves (VCG) mechanism

 the simplest truthful mechanism gives each task independently to the fastest machine for that task

• VCG is *n*-approximative for makespan minimization

The Nisan-Ronen conjecture

No truthful mechanism for unrelated scheduling can have a better than n approximation of the optimal makespan (indep. of computational power). [STOC'99, *Games and Economic behavior* 2001]

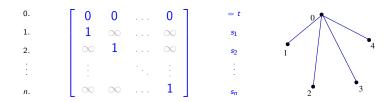
Lower bounds for truthful makespan approximation:

2		[Nisan, Ronen 1999]
$1+\sqrt{2}$	[Christ	codoulou, Koutsoupias, Vidali <i>Algorithmica</i> 2009]
1+arphipprox 2.618		[Koutsoupias, Vidali Algorithmica 2012]
n for anonymous mechan	isms	[Ashlagi, Dobzinski, Lavi Math.Op.Res. 2012]
2.755		[Giannakopoulos, Hammerl, Poças SAGT20]
3		[Dobzinski, Shaulker 2020]
$\sqrt{n-1}+1$		[Christodoulou, Koutsoupias, K. FOCS21]

<u>Our result:</u> No truthful mechanism for unrelated scheduling with n machines has better than n approx. factor for the makespan objective. [STOC23]

Preliminaries I – graph and multigraph inputs

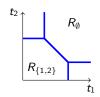
• we allow only 2 machines for each task:

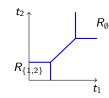


- the tasks can be modelled as edges, and machines as vertices of a graph
- most of our tasks will have a 0 value on one of their machines (trivial tasks)

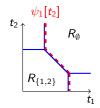
Preliminaries II – weak monotonicity

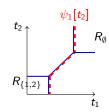
the geometry of WMON allocations
 (for one machine and two tasks, fixed input of other machines)

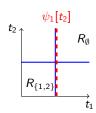




• the boundary ψ_j is the highest t_j value (supremum) that still receives task j







Proof sketch

Recall: ψ_i is the highest t_i value that player 0 still receives task j

0.	Γ 0	0		ψ_{j}		0]	= t
1.	1					∞		s_1
2.	∞	1		∞		∞		s ₂
:	:		٠.			:		:
:	:			1		:		:
:	:				٠.	:		:
n.	∞	∞	∞	∞	∞	1		sn

<u>Idea:</u> Prove the existence of such a (partial) input so that...

A.
$$\sum_{j=1}^{n} \psi_j \geq n$$

Proof sketch

Recall: ψ_j is the highest t_j value that still receives task j

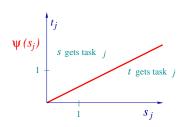
<u>Idea:</u> Prove the existence of such a (partial) input so that...

A.
$$\sum_{i=1}^{n} \psi_i \geq n$$

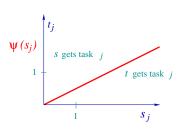
B. and setting ψ_i for all j at once, player 0 still gets all tasks

Then:
$$ALG = \sum_{j=1}^{n} \psi_j \ge n$$
, $OPT = 1$

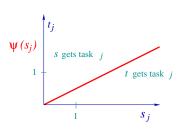
- ullet consider boundary ψ_j as function of s_j
- assume first $\psi_j(s_j) = c \cdot s_j$



- ullet consider boundary ψ_j as function of s_j
- assume first $\psi_j(s_j) = c \cdot s_j$
- then $\psi_i^{-1}(t_j) = t_j/c$, and ...

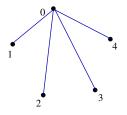


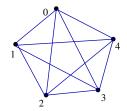
- consider boundary ψ_j as function of s_j
- assume first $\psi_j(s_j) = c \cdot s_j$
- then $\psi_{i}^{-1}(t_{j}) = t_{j}/c$, and ...
- $\psi_j(1) + \psi_j^{-1}(1) = c + \frac{1}{c} \geq 2.$



Rough idea:

• use a task for each pair of n+1 machines

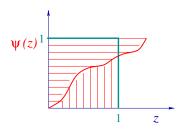




- modelling tasks as edges of a graph: start with a clique
- Sum up every $\psi_{ij}(1)$

$$\sum_{i}\sum_{j\neq i}\psi_{ij}(1)=\sum_{i,j\mid i\neq j}(\psi_{ij}(1)+\psi_{ji}(1))\geq \binom{n+1}{2}\cdot 2=n\cdot (n+1)$$

Problem: ψ_{ii} is not linear



Idea: integral

$$\int_0^1 (\psi_{ij} + \psi_{ji}) \, dz \, \geq \, 1 = \, \int_0^1 \, 2z \, dz$$

$$\Rightarrow \exists z \quad (\psi_{ij} + \psi_{ji})(z) \ge 2z$$
 (mean value theorem)

 $\Rightarrow \exists z \in (0,1]$ and \exists machine i such that

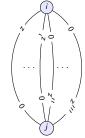
$$\sum_{j\,|\,j\neq i}\psi_{ij}(z)\geq n\cdot z$$

w.l.o.g. machine i = 0

$$\begin{bmatrix} 0 & 0 & \psi_{j}(z) & 0 & 0 \\ z & & & & \\ & z & & & \\ & & z & & \\ & & & z & \\ & & & z & \\ & & & z & \\ \end{bmatrix}$$

<u>Problem:</u> As we change these tasks to $s_j = z$, the boundary functions ψ_{0j} change.

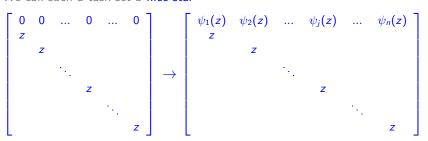
Idea: multi-clique



- use exp. many parallel tasks (edges) allover in the clique;
- fix task values for each edge to independent random $z \in (0,1]$ and randomly to $0 \longleftrightarrow z$ or to $z \longleftrightarrow 0$;
- round down each $\psi^{\rm e}_{ij}$ to one of finitely many step-functions;
- many parallel edges e between i and j have the same ψ_{ij}^e by pigeonhole; let this be the single ψ_{ii} ;
- choose $z \in (0,1]$ and machine i like above;
- many of the parallel edges will have value 0 for i, and the chosen z as fixed random value...
- ullet ... using that ψ^e_{ii} and the values of parallel tasks are independent

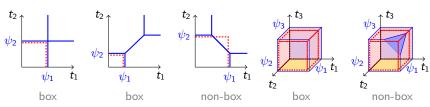
We have shown existence of a machine and tasks with $\sum_i \psi_i(z) \ge n \cdot z$

We call such a task set a *nice star*



Part B: But why can we set them to ψ_i at once?

Good and bad examples:



Part B: change every 0 to ψ_i at once!

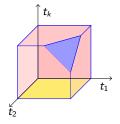
<u>Theorem:</u> If we have exp. many parallel tasks (edges) for each machine j in a *multistar*, then it contains a star which is a box (unless $approx = \infty$).

- for each satellite machine j we need many parallel tasks with the same ψ_j and allover the same z
- by the above Theorem there exists a star which is a box, and we obtain:

$$ALG \ge \sum_{j} \psi_{j}(z) \ge n \cdot z, \qquad OPT = z, \qquad approx \ge n$$

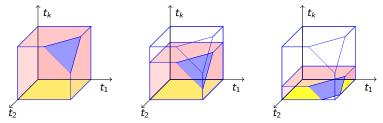
Proof (intuition):

- induction on the number of satellites k = 2, ..., n;
- we use that all truthful mechanisms for 2 machines, 2 parallel tasks are known;
- induction step $(k-1) \rightarrow k$: assume $\{1,2,\ldots,k\}$ is not a box (only its subsets)



Proof (intuition):

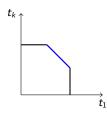
- induction on the number of satellites k = 2, ..., n;
- we use that all truthful mechanisms for 2 machines, 2 parallel tasks are known;
- induction step $(k-1) \rightarrow k$: assume $\{1, 2, \dots, k\}$ is not a box (only its subsets)



 in the 'blue' points, if ψ_k(s_k) were linear function, then it would have a non-box subset for some s_k

Proof (intuition):

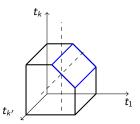
- induction on the number of satellites k = 2, ..., n;
- we use that all truthful mechanisms for 2 machines, 2 parallel tasks are known;
- induction step $(k-1) \rightarrow k$: assume $\{1, 2, \dots, k\}$ is not a box (only its subsets)



in the 'blue' points, if ψ_k(s_k) were linear function, then it would have a non-box subset for some s_k

Proof (intuition):

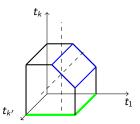
- induction on the number of satellites k = 2, ..., n;
- we use that all truthful mechanisms for 2 machines, 2 parallel tasks are known;
- induction step $(k-1) \rightarrow k$: assume $\{1, 2, \dots, k\}$ is not a box (only its subsets)



- ▶ in the 'blue' points, if $\psi_k(s_k)$ were linear function, then it would have a non-box subset for some s_k
- \Rightarrow since $\psi_k(s_k)$ nonlinear, the allocation of task k is independent of $t_{k'}$ of every parallel task k'

Proof (intuition):

- induction on the number of satellites k = 2, ..., n;
- we use that all truthful mechanisms for 2 machines, 2 parallel tasks are known;
- induction step $(k-1) \rightarrow k$: assume $\{1, 2, \dots, k\}$ is not a box (only its subsets)



- ▶ in the 'blue' points, if $\psi_k(s_k)$ were linear function, then it would have a non-box subset for some s_k
- \Rightarrow since $\psi_k(s_k)$ nonlinear, the allocation of task k is independent of $t_{k'}$ of every parallel task k'
- $\Rightarrow \{1, 2, \dots, k'\}$ is a box
- \Rightarrow the multistar contains plenty of k-stars that are boxes

Thank you!