A proof of the Nisan-Ronen Conjecture

Archimedes Workshop 3. July 2024

Giorgos Christodoulou

Aristotle University of Thessaloniki, Greece

Elias Koutsoupias

University of Oxford, UK

Annamária Kovács

Goethe University, Frankfurt M., Germany

Unrelated Scheduling

Input: m tasks n machines $\sqrt{ }$ $\overline{}$ t_{11} t_{12} \cdots t_{1m} t_{21} t_{22} \cdots t_{2m} .
.
.
. t_{n1} t_{n2} \cdots t_{nm} 1 $\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \end{array} \\ \begin{array}{c} \end{array} \end{array} \end{array}$

 t_{ii} : running time of task *i* on machine *i*

Unrelated Scheduling

Input: m tasks n machines $\sqrt{ }$ $\overline{}$ t_{11} t_{12} \cdots t_{1m} t_{21} t_{22} \cdots t_{2m} .
.
.
. t_{n1} t_{n2} \cdots t_{nm} 1 $\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \end{array} \\ \begin{array}{c} \end{array} \end{array} \end{array}$

 t_{ii} : running time of task *i* on machine *i*

Output: $x_{ii} \in \{0,1\}$ an allocation of tasks to machines that minimizes the makespan

$$
makes pan = max_{i} finish time_{i}
$$

Truthful scheduling mechanisms

weakly monotone scheduling algorithm $+$ truthful payment

- We are interested only in *weakly monotone (WMON)* scheduling algorithms.
- for exactly these exist payments to the machines so that each machine *i* reports the running times t_{ii} truthfully

Definition: The scheduling algorithm is weakly monotone, if for every machine *i*, for every fixed bids of the other machines, for any two bid vectors $(\,t_{ij})_{j\in[m]},(t_{ij}')_{j\in[m]}$ and the corresponding allocations $x \neq x'$ holds that $\sum_{j=1}^m (x'_{ij} - x_{ij}) \cdot (t'_{ij} - t_{ij}) \leq 0.$

The Vickrey-Clarke-Groves (VCG) mechanism

• the simplest truthful mechanism gives each task

independently to the fastest machine for that task

• VCG is *n*-approximative for makespan minimization

The Nisan-Ronen conjecture

No truthful mechanism for unrelated scheduling can have a better than n approximation of the optimal makespan (indep. of computational power). [STOC'99, Games and Economic behavior 2001]

Lower bounds for truthful makespan approximation:

2 12 INIS IN $1 + \sqrt{2}$ [Christodoulou, Koutsoupias, Vidali Algorithmica 2009] $1 + \varphi \approx 2.618$ [Koutsoupias, Vidali Algorithmica 2012] n for anonymous mechanisms [Ashlagi, Dobzinski, Lavi Math.Op.Res. 2012] 2.755 [Giannakopoulos, Hammerl, Pocas SAGT20] 3 [Dobzinski, Shaulker 2020] $\sqrt{n-1}+1$ [Christodoulou, Koutsoupias, K. FOCS21]

Our result: No truthful mechanism for unrelated scheduling with *n* machines has better than n approx. factor for the makespan objective. [STOC23]

Preliminaries $I - graph$ and *multigraph* inputs

• we allow only 2 machines for each task:

• the tasks can be modelled as edges, and machines as vertices of a graph

• most of our tasks will have a 0 value on one of their machines (*trivial tasks*)

Preliminaries II – weak monotonicity

• the geometry of WMON allocations

(for one machine and two tasks, fixed input of other machines)

• the boundary ψ_i is the highest t_i value (supremum) that still receives task *i*

Proof sketch

Recall: ψ_i is the highest t_i value that player 0 still receives task j

Idea: Prove the existence of such a (partial) input so that...

A. $\sum_{j=1}^n \psi_j \geq n$

Proof sketch

Recall: ψ_i is the highest t_i value that still receives task j

Idea: Prove the existence of such a (partial) input so that...

A. $\sum_{j=1}^n \psi_j \geq n$

B. and setting ψ_i for all j at once, player 0 still gets all tasks

Then: $ALG = \sum_{j=1}^{n} \psi_j \ge n$, $OPT = 1$

• consider boundary ψ_j as function of s_j

• assume first
$$
\psi_j(s_j) = c \cdot s_j
$$

• consider boundary ψ_i as function of s_i

• assume first
$$
\psi_j(s_j) = c \cdot s_j
$$

• then
$$
\psi_j^{-1}(t_j) = t_j/c
$$
, and ...

• consider boundary ψ_i as function of s_i

• assume first
$$
\psi_j(s_j) = c \cdot s_j
$$

• then
$$
\psi_j^{-1}(t_j) = t_j/c
$$
, and ...

•

$$
\psi_j(1)+\psi_j^{-1}(1)\,=\,c\,+\,\frac{1}{c}\,\geq\,2.
$$

• use a task for each pair of $n + 1$ machines

- modelling tasks as edges of a graph: start with a *clique*
- Sum up every $\psi_{ii}(1)$

$$
\sum_{i} \sum_{j \neq i} \psi_{ij}(1) = \sum_{i,j \mid i \neq j} (\psi_{ij}(1) + \psi_{ji}(1)) \geq {n+1 \choose 2} \cdot 2 = n \cdot (n+1)
$$

 \Rightarrow \exists machine i with $\sum_{j\neq i}\psi_{ij}(1)\geq n$

ldea: integral

$$
\int_0^1 (\psi_{ij} + \psi_{ji}) dz \geq 1 = \int_0^1 2z dz
$$

$$
\Rightarrow \exists z \quad (\psi_{ij} + \psi_{ji})(z) \geq 2z
$$

(mean value theorem)

 $\Rightarrow \exists z \in (0,1]$ and \exists machine *i* such that $\sum \psi_{ij}(z) \geq n \cdot z$ $i \mid i \neq i$ w.l.o.g. machine $i = 0$

$$
\begin{bmatrix} 0 & 0 & \psi_j(z) & 0 & 0 \\ z & & & & \\ z & & & & \\ & & z & & \\ & & & & z & \\ & & & & & z \end{bmatrix}
$$

Problem: As we change these tasks to $s_i = z$, the boundary functions ψ_{0i} change.

Idea: multi-clique

0

· · ·

z ′′′

i

 \circ

z′

· · ·

z

 \circ

j

N ′′

 \circ

- use exp. many parallel tasks (edges) allover in the clique;
- *fix task values* for each edge to independent random $z\in(0,1]$ and randomly to $0\longleftrightarrow z$ or to $z\longleftrightarrow 0;$
- $\bullet\,$ round down each ψ^e_{ij} to one of finitely many step-functions;
- $\bullet\,$ many parallel edges e between i and j have the same ψ^e_{ij} by pigeonhole; let this be the single ψ_{ii} ;
- choose $z \in (0,1]$ and machine *i* like above;
- many of the parallel edges will have value 0 for i , and the chosen z as fixed random value...
- ... using that ψ_{ij}^e and the values of parallel tasks are independent

We have shown existence of a machine and tasks with $\sum_j \psi_j({\sf z}) \ge n \cdot {\sf z}$

We call such a task set a *nice star*

Part B: But why can we set them to ψ_i at once?

Good and bad examples:

Part B: change every 0 to ψ_i at once!

Theorem: If we have exp. many parallel tasks (edges) for each machine j in a *multistar*, then it contains a star which is a box (unless approx = ∞).

 $\sqrt{2}$ $\begin{matrix}0 & 0 & 0 & \psi_1 & 0 & 0 & \psi_2 & 0 & 0 & 0 & \cdots & 0 & \psi_{\mathsf{n}} & 0 & 0 & 0\end{matrix}$ z z z z z z z z z z . . . z z z z z T $\begin{array}{c} \hline \end{array}$

- for each satellite machine *j* we need *many* parallel tasks with the same ψ_i and allover the same z
- by the above Theorem there exists a star which is a box, and we obtain:

$$
ALG \geq \sum_j \psi_j(z) \geq n \cdot z, \qquad OPT = z, \qquad \text{approx} \geq n
$$

Theorem: If we have exp. many parallel tasks (edges) for each machine j in a *multistar*, then it contains a star which is a box (or *approx* = ∞).

Proof (intuition):

- induction on the number of satellites $k = 2, \ldots, n$;
- we use that all truthful mechanisms for 2 machines, 2 parallel tasks are known;
- induction step $(k 1) \rightarrow k$: assume $\{1, 2, ..., k\}$ is not a box (only its subsets)

 \blacktriangleright in the 'blue' points, if ψ (sk) were linear function, then it would have a set of ψ

Theorem: If we have exp. many parallel tasks (edges) for each machine i in a *multistar*, then it contains a star which is a box (or *approx* = ∞).

Proof (intuition):

- induction on the number of satellites $k = 2, \ldots, n$;
- we use that all truthful mechanisms for 2 machines, 2 parallel tasks are known;
- induction step $(k 1) \rightarrow k$: assume $\{1, 2, ..., k\}$ is not a box (only its subsets)

▶ in the 'blue' points, if $\psi_k(s_k)$ were linear function, then it would have a non-box subset for some s_k

Theorem: If we have exp. many parallel tasks (edges) for each machine j in a *multistar*, then it contains a star which is a box (or *approx* = ∞).

Proof (intuition):

- induction on the number of satellites $k = 2, \ldots, n$;
- we use that all truthful mechanisms for 2 machines, 2 parallel tasks are known;
- induction step $(k-1) \rightarrow k$: assume $\{1, 2, ..., k\}$ is not a box (only its subsets)

▶ in the 'blue' points, if $\psi_k(s_k)$ were linear function, then it would have a non-box subset for some s_k

Theorem: If we have exp. many parallel tasks (edges) for each machine i in a *multistar*, then it contains a star which is a box (or *approx* = ∞).

Proof (intuition):

- induction on the number of satellites $k = 2, \ldots, n$;
- we use that *all* truthful mechanisms for 2 machines, 2 parallel tasks are known;
- induction step $(k-1) \rightarrow k$: assume $\{1, 2, ..., k\}$ is not a box (only its subsets)

- **▶** in the 'blue' points, if $\psi_k(s_k)$ were linear function, then it would have a non-box subset for some s_k
- \Rightarrow since $\psi_k(\mathsf{s}_k)$ nonlinear, the allocation of task k is independent of $t_{k'}$ of *every* parallel task k ′

Theorem: If we have exp. many parallel tasks (edges) for each machine j in a *multistar*, then it contains a star which is a box (or *approx* = ∞).

Proof (intuition):

- induction on the number of satellites $k = 2, \ldots, n$;
- we use that all truthful mechanisms for 2 machines, 2 parallel tasks are known;
- induction step $(k 1) \rightarrow k$: assume $\{1, 2, ..., k\}$ is not a box (only its subsets)

- **▶** in the 'blue' points, if $\psi_k(s_k)$ were linear function, then it would have a non-box subset for some s_k
- \Rightarrow since $\psi_k(\mathsf{s}_k)$ nonlinear, the allocation of task k is independent of $t_{k'}$ of *every* parallel task k ′
- \Rightarrow {1, 2, ..., k'} is a box
- \Rightarrow the multistar contains plenty of *k*-stars that are boxes

Thank you!