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Min-Max Optimization

* Applications: Mathematics, Optimization, Game Theory,...
[von Neumann 1928, Dantzig ‘47, Brown’50, Robinson’51, Blackwell’56,..

* Best-Case Scenario: f is convex in 6, concave in w

BEGAN. Bertholet et al. 2017.

* Modern Applications: GANs, adversarial examples, ...

— exacerbate the importance of first-order methods, non convex-concave objectives



GAN Outputs

BEGAN. Bertholet et al. 2017.

(c) Kitchen. (d) Conference room.

LSGAN. Mao et al. 2017.



GAN uses

Input i lll = | ' Text -> Image Synthesis

this small bird has a pink this magnificent fellow is
breast and crown, and black almost all black with a red
primaries and secondaries. crest, and white cheek patch.

Pix2pix. Isola 2017. Many examples at
https://phillipi.github.io/pix2pix/

Many applications:
* Domain adaptation
e e Super-resolution
- | * Image Synthesis

CycleGAN. Zhu et al. 2017. :
* Image Completion

* Compressed Sensing



Min-Max Optimization

Solve: infsup (6, w)
6 w

where 8, w high-dimensional

* Applications: Mathematics, Optimization, Game Theory,...
[von Neumann 1928, Dantzig ‘47, Brown’50, Robinson’51, Blackwell’56,..

* Best-Case Scenario: f is convex in 6, concave in w

BEGAN. Bertholet et al. 2017.

* Modern Applications: GANs, adversarial examples, ...

— exacerbate the importance of first-order methods, non convex-concave objectives

* Personal Perspective: applications of min-max optimization will multiply, going forward, as
ML develops more complex and harder to interpret algorithms

— sup players will be introduced to check the behavior of the inf players



Generative Adversarial Networks
[Goodfellow et al. NeurlPS’14]

Real or Hallucinated

? igf sup f(0,w)

Discriminator: DNN w/
parameters w

Hallucinated Images E Real Images
(from generator) | , ' il (from training set)

Generator: DNN w/
parameters 6

| i e.g. Wasserstein-GANs:
andomness 2 OD f(6,W) = Exp,ps [Dw )] = Ez-n(o,n[Dw(Gg(2))]

0, w: high-dimensional
w» solve game by having min (resp. max) player run online gradient descent (resp. ascent)

* major challenges:
— training oscillations

— generated & real distributions high-dimensional +» no rigorous statistical guarantees



Menu

* Min-Max Optimization and Adversarial Training

* Training Challenges:
* reducing training oscillations

e Statistical Challenges:
* reducing sample requirements
 attaining statistical guarantees
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Training Oscillations: Gaussian Mixture

True Distribution: Mixture of
8 Gaussians on a circle

- - - -
Step 0 Step 5k Step 10k Step 15k Step 20k Step 25k

Output Distribution of standard GAN, trained via gradient descent/ascent dynamics:
cycling through modes at different steps of training

from [Metz et al ICLR’17]
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True Distribution: MINIST

o Oscillations: Handwritten Di
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Output Distribution of standard GAN, trained via gradient descent/ascent dynamics

cycling through “proto-digits” at different steps of training
from [Metz et al ICLR’17]



Training Oscillations:
even for bilinear objectives!

* True distribution: isotropic Normal distribution, namely X ~ N ([ﬂ szz)

* Generator architecture: Gg(Z) = 0 + 7 (adds input Z to internal params)

Z,0,w: 2-dimensional

* Discriminator architecture: D,,(:) = (w,") (linear projection)

* W-GAN objective: mgn max Ey[D,,(X)] — Ez[D,,(Gg(Z))]
o (14— R
= minmax w" - —0 function
0 w 4
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Gradient Descent Dynamics from [Daskalakis, llyas, Syrgkanis, Zeng ICLR’18]



Training Oscillations:

persistence under many variants of Gradient Descent
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(a) GD dynamics with a gradient penalty added to the loss. n = 0.1 and A = 0.1.
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(b) GD dynamics with momentum. 7 = 0.1 and v = 0.5.
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(c) GD dynamics with momentum and gradient penalty. n = .1,y = 0.2 and A = 0.1.

— gpnacyiee
oeneaier

o ")I “"Jllimrh\“u'll t\Wll\wfllll‘'Wh‘m'iII\“'I‘I\\""II\WHHW

IO

nnnnnnn

o Mmoo wms wmeo

(d) GD dynamics with momentum and gradient penalty, training generator every 15 training iterations of the
discriminator. n = .1,y = 0.2and A = 0.1.
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(e) GD dynamics with Nesterov momentum and gradient penalty, training generator every 15 training iterations
of the discriminator. 7 = .1, v = 0.2 and X = 0.1.

from [Daskalakis, llyas, Syrgkanis, Zeng ICLR’18]



o Oscillations:
Online Learning Perspective

Best-Case Scenario: Given convex-concave f (x,y), solve: mi}r(l max f(x,y)
XEX YE

Trainin

[von Neumann’28]: min-max=max-min; solvable via convex-programming

Online Learning: if min and max players run any no-regret learning procedure
they converge to minimax equilibrium

e E.g. follow-the-regularized-leader (FTRL), follow-the-perturbed-leader, MWU
e Follow-the-regularized-leader with £5-regularization = gradient descent

“Convergence:” Sequence (x;, y;); converges to minimax equilibrium in the
. 1 1 .
average sense, i.e. [ ;ert X, ?ert Yz ) = min r)rlleag f(x,y)

Can we show point-wise convergence of no-regret learning methods?
* [Mertikopoulos-Papadimitriou-Piliouras SODA’18]: No for any FTRL



Negative Momentum

* Variant of gradient descent:
Vit xep1 =2 — - V(xe) +

* |Interpretation: undo today, some of ie negative momentum

* Gradient Descent w/ negative momentum

FTRL w/ £5-regularization
[Rakhlin-Sridharan COLT’13, Syrgkanis et al. NeurlPS’15]

Q

method

[Korpelevich’76, Chiang et al COLT’12, Gidel et al’18,
Mertikopoulos et al’18]

* Does it help in min-max optimization?



Negative Momentum: why it could help

* Eg. f(x,y) =(x—0.5) - (y —0.5)

4 N
Xt+1 = X¢g — N fo(xt»J’t)
Yer1 = Ve + 1V, f(x, Yt)J

¢ : start
¢ : min-max equilibrium

(xt+1 =x; — 1 Vo f (x¢, V) \
_|_

Veer = Ye 1V f (X6, ve)

\_ /




Negative Momentum: convergence

dynamics:
Vt: Xt+1 = X — 1+ fo(xt; yt) +
Yt+1 = yt +r] ’ Vyf(xt;}’t) T

* [Daskalakis-llyas-Syrgkanis-Zeng ICLR’18]: exhibits last iterate convergence
for unconstrained bilinear games: min max f(x,y) = x"Ay + bTx + cTy
x€ER™ yeRM

e [Liang-Stokes’18]: ...convergence rate is geometric if A is well-conditioned, extends
to strongly convex-concave functions f(x, y)

* E.g.in previous isotropic Gaussian case: X ~ N((3,4),12x2), Go(Z)=0+2Z,
DW() — <W1>




Negative Momentum: convergence

dynamics:
Vt: Xt+1 = X — 1+ fo(xt;yt) +
Yt+1 = yt +r] ’ Vyf(xt;}’t) T

* [Daskalakis-llyas-Syrgkanis-Zeng ICLR’18]: exhibits last iterate convergence
for unconstrained bilinear games: min max f(x,y) = x"Ay + bTx + cTy
x€ER™ yeRM

e [Liang-Stokes’18]: ...convergence rate is geometric if A is well-conditioned, extends
to strongly convex-concave functions f(x, y)

 [Daskalakis-Panageas ITCS’18]: Projected exhibits last iterate convergence

even for constrained bilinear games: min max x Ay
X€EA, YEA,

= all linear programming



in the Wild

* Can try optimism for non convex-concave min-max objectives f(x, y)

Negative Momentum

or

No hope that stable points of

* |ssue [Daskalakis, Panageas NeurlPS’18]
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Negative Momentum: in the Wild

* Can try optimism for non convex-concave min-max objectives f(x, y)

* |ssue [Daskalakis, Panageas NeurlPS’18]: No hope that stable points of or
GDA are only local min-max points

* Local Min-Max € Stable Points of GDA <€ Stable Points of
* also [Adolphs et al. 18]: left inclusion

* Question: identify first-order method converging to local min-max w/ probability 1

* While this is pending, evaluate optimism in practice...

e [Daskalakis-llyas-Syrgkanis-Zeng ICLR’18]: propose

 Adam, a variant of gradient descent proposed by [Kingma-Ba ICLR’15],
has found wide adoption in deep learning, although it doesn’t always
converge [Reddi-Kale-Kumar ICLR’18]

is the right adaptation of Adam to “undo some of the
past gradients”



Optimistic Adam on CIFAR10

* Compare Adam, Optimistic Adam, trained on CIFAR1O0, in terms of
Inception Score

* No fine-tuning for Optimistic Adam, used same hyper-parameters
for both algorithms as suggested in Gulrajani et al. (2017)




Optimistic Adam on CIFAR10

e Compare Adam, Optimistic Adam, trained on CIFAR10, in terms of

Inception Score

* No fine-tuning for Optimistic Adam, used same hyper-parameters
for both algorithms as suggested in Gulrajani et al. (2017)

5.3 method

® optimAdam_ratiol
® adam
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4.0 4
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2.0
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Figure 14: The inception scores across epochs for GANs trained with Optimistic Adam (ratio 1) and Adam (ra-
tio 5) on CIFAR10 (the two top-performing optimizers found in Section[6] with 10%-90% confidence intervals.
The GANs were trained for 30 epochs and results gathered across 35 runs.

- -

(b) Sample of images from Gen-
erator of Epoch 94, which had
the highest inception score.



Menu

* Min-Max Optimization and Adversarial Training

* Training Challenges:
* reducing training oscillations

e Statistical Challenges:
* reducing sample requirements
 attaining statistical guarantees
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Generative Adversarial Networks (GANSs)

Real or Hallucinated

i

Discriminator: DNN w/
parameters w

Hallucinated Images -~ Real Images
(from generator) | | | o (from training set)

Generator: DNN w/
parameters 6

infsup f(0,w)
0 w

e.g. Wasserstein-GANs:
Simple Z ~N(0,I) fO,w) = Ex-p, o Dy, (X)] — Ez-non Dy (Go(Z))]

Randomness

« Inner sup (Discrimination) problem: a statistical estimation problem

— how .close ISP, anq P generated in distance defined by test functions expressible in the
architecture of the discriminator?

— because training will fail to solve min-max problem to optimality, this distance won’t be
truly minimized
- major statistical challenges:

— Certifying a trained GAN: how closeisp_,  andp in some distance of interest?

generated

— Alleviating computational & statistical burden of discrimination
— Scaling up the dimensionality of generated distributions



GANSs: Statistical Challenges

* Certifying a trained GAN: how closeisp_,_, and P jenerateq IN SOME distance of interest?

* Fundamental Challenge: curse of dimensionality

* claim (birthday paradox): given sample access to dist'n P over {0,1}", and Q=Unif
({0,1}"), estimating Wasserstein(P, Q) to within +1/4 requires Q(Z"/z) samples

* for n=1000’s (e.g. CIFAR)

- infeasible, unless lower-dimensional structure in p
is exploited

;and p

rea generated

* Alleviating Computational & Statistical Burden of Discriminator:

w»> infeasible, unless lower-dimensional structure inp_, ,and p

. ) generated
is exploited

e Scaling-up Dimensionality of Generated Distribution (e.g. video generation):

w» infeasible, unless lower-dimensional structure in p_, , is exploited



Lower-Dimensional Structure:
Bayesian Networks

* Probability distribution defined in terms of a DAG ¢ = (V,E)
* Node v associated w/ random variable X,, € X

* Distribution factorizable in terms of parenthood relationships
Pr(x) = 1_[ Pry, xq, (xpxp, ), Vx € ZV
1%

@
A3 Pr[x] = Pr[xq] - Pr[x,] - Prlxz|xy, x,] - Prlxg|xs] - Prlxs| x3, x4]
o
4

Is it easier to discriminate between Bayes-nets
whose structure is known?



BayesNet Discrimination

Bayesnet P on Bayesnet Q) on
DAG G with: DAG G with:

- n nodes - n nodes
- in-degree d - in-degree d

Goal: Given samples from P, Q and ¢, distinguish: P = Q vs dist(P,Q) > ¢

[Daskalakis-Pan COLT’17]: If dist is Total Variation distance, there exist
. (|2|0-75(d+1)n

computationally efficient testers using O =

) samples.

Moreover, the dependence on n, € of both bounds is tight up to a O(log n) factor, and
the exponential in d dependence is necessary and essentially tight.

[Canonne et al. COLT’17]: Identify conditions under which dependence on n can be
made \/n when one of the two Bayesnets is known

Effective dimensionality is: # d



BayesNet Discrimination in TV

* Goal: distinguish P =Q vs dpy(P,Q) > ¢
* |dea: distance localization

* prove statement of the form: “If BayesNets P and Q are far in TV, there exists
a small size witness set S of variables such that P; and (s, the marginals of P

and Q on variables §, are also somewhat far away”
* reduces the original problem to identity testing on small size sets whose
distributions can be sampled
* Question: which distances are localizable?
 KL(P||Q) < ).,KL (Pvun,,HQqu,,) (chain rule of KL)
* dry(P,Q) < Xy drv (Pyun,, Quum,) + Xv drv (Pr,, Qn,) (hybrid argument)
* H*(P,Q) < X, H? (Pyun,, Quun,)



Wasserstein Subadditivity

Bayesnet P Bayesnet ()

on DAG G on DAG G

Q: Does Wasserstein satisfy subadditivity
WaSS(P; Q) < 2 WaSS(PvUHv”QvUHv) ?
1%

A: Not always; exist pair of Markov Chains: X - Y - Z and X' - Y’ - Z' such that
Wass((X,Y), (X',Y") + Wass((Y,Z2), (Y',Z"))
Wass((X,Y,2),(X",Y",Z"))
can be made arbitrarily small.

[Preliminary Result]: Wasserstein distance between two Markov Chains X3, ..., X7 and
Yi, ..., Yp satisfies subbadditivity if the conditional densities fx(x;|x;—;) and
fy (V¢|ye—1) are Lipschitz wrt x;_; and y;_; respectively, for all t.

(extends to Bayesian Networks)



Video Generation

\\-//

Xmodel

-I Too high dimensional

Xdata Discriminate generated video against
target distribution over videos



Video Generation

can exploit subadditivity and discriminate only pairs of consecutive frames of
generated distribution against pairs of consecutive frames of target distribution

N.B. resulting multi-player zero-sum game falls in realm of [D-Papadimitriou ICALP’09],
[Even-Dar et al STOC’09], [Cai-D SODA’11], [Cai et al MATHOR’15]; efficient dynamics known




Video Generation: experiment [iyas'18]

Created random 4-frame videos of MINIST digits

* in every training video, digits are weakly increasing in time
Trained two video GANSs:

* a GAN w/ an un-factorized discriminator

 and a GAN w/ a factorized discriminator
GANs must learn both how to hallucinate handwritten digits,

and that they need to put them in increasing order

Compare factorized vs unfactorized models in terms of accuracy

0.7
0.6

|
0.5 \'/

0.4

0.3

—— Factorized

Unfactorized

0.2
0 50 100 150 200 250 300 350 400



Conclusions

* Min-Max Optimization has found numerous applications in
Optimization, Game Theory, Adversarial Training

* Applications to Generative Adversarial Networks pose serious
challenges, of optimization (oscillations) and statistical (curse of
dimensionality) nature

* We propose gradient descent with negative momentum as an
approach to ease training oscillations

 We prove Wasserstein subadditivity in Bayesnets and propose
modeling dependencies in the data as an approach to ease the
curse of dimensionality

* Lots of interesting theoretical and practical challenges going
forward



Thanks!
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