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Solve: inf
𝜃
sup
𝑤

𝑓 𝜃,𝑤

where 𝜃, 𝑤 high-dimensional 

• Applications: Mathematics, Optimization, Game Theory,…

[von Neumann 1928, Dantzig ’47, Brown’50, Robinson’51, Blackwell’56,…]  

• Best-Case Scenario: 𝑓 is convex in 𝜃, concave in w

• Modern Applications: GANs, adversarial examples, …

– exacerbate the importance of first-order methods, non convex-concave objectives

Min-Max Optimization

BEGAN. Bertholet et al. 2017.



GAN Outputs

LSGAN. Mao et al. 2017.

BEGAN. Bertholet et al. 2017.



CycleGAN. Zhu et al. 2017.

GAN uses

Pix2pix. Isola 2017. Many examples at  

https://phillipi.github.io/pix2pix/

Reed et al. 2017.
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Text -> Image Synthesis

Many applications:
• Domain adaptation
• Super-resolution
• Image Synthesis
• Image Completion
• Compressed Sensing
• …



Solve: inf
𝜃
sup
𝑤

𝑓 𝜃,𝑤

where 𝜃, 𝑤 high-dimensional 

• Applications: Mathematics, Optimization, Game Theory,…

[von Neumann 1928, Dantzig ’47, Brown’50, Robinson’51, Blackwell’56,…]  

• Best-Case Scenario: 𝑓 is convex in 𝜃, concave in w

• Modern Applications: GANs, adversarial examples, …

– exacerbate the importance of first-order methods, non convex-concave objectives

• Personal Perspective: applications of min-max optimization will multiply, going forward, as 
ML develops more complex and harder to interpret algorithms

– sup players will be introduced to check the behavior of the inf players

Min-Max Optimization

BEGAN. Bertholet et al. 2017.



Generative Adversarial Networks (GANs) 
[Goodfellow et al. NeurIPS’14]

𝑍 ∼ 𝑁(0, 𝐼)Simple 
Randomness

Generator: DNN w/ 
parameters 𝜃

Discriminator: DNN w/ 
parameters 𝑤

Hallucinated Images  
(from generator)

Real Images  
(from training set)

Real or Hallucinated

inf
𝜃
sup
𝑤

𝒇 𝜽,𝒘

expresses how well 
Discriminator distinguishes  
true vs generated images

e.g. Wasserstein-GANs:
𝑓(𝜃,𝑤) = 𝔼𝑋∼𝑝𝑟𝑒𝑎𝑙 𝐷𝑤 𝑋 − 𝔼𝑍∼𝑁(0,𝐼) 𝐷𝑤 𝐺𝜃(𝑍)

• 𝜃, 𝑤: high-dimensional 

⇝ solve game by having min (resp. max) player run online gradient descent (resp. ascent)

• major challenges:

– training oscillations

– generated & real distributions high-dimensional ⇝ no rigorous statistical guarantees



Menu

• Min-Max Optimization and Adversarial Training

• Training Challenges:
• reducing training oscillations

• Statistical Challenges: 
• reducing sample requirements

• attaining statistical guarantees
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Training Oscillations: Gaussian Mixture

True Distribution: Mixture of 
8 Gaussians on a circle

Output Distribution of standard GAN, trained via gradient descent/ascent dynamics:
cycling through modes at different steps of training

from [Metz et al ICLR’17]



Training Oscillations: Handwritten Digits

True Distribution: MNIST

Output Distribution of standard GAN, trained via gradient descent/ascent dynamics
cycling through “proto-digits” at different steps of training

from [Metz et al ICLR’17]



• True distribution: isotropic Normal distribution, namely  𝑋 ∼ 𝒩
3
4

, 𝐼2×2

• Generator architecture: 𝐺𝜽 𝑍 = 𝜽 + 𝑍 (adds input 𝑍 to internal params)

• Discriminator architecture: 𝐷𝒘 ⋅ = 𝒘,⋅ (linear projection)

• W-GAN objective: min
𝜽

max
𝒘

𝔼𝑋 𝐷𝒘 𝑋 − 𝔼𝑍 𝐷𝒘 𝐺𝜽(𝑍)

= min
𝜽

max
𝒘

𝒘T ⋅
3
4
− 𝜽

from [Daskalakis, Ilyas, Syrgkanis, Zeng ICLR’18]

convex-concave 
function

𝑍, 𝜃,𝑤: 2-dimensional

Gradient Descent Dynamics

Training Oscillations: 
even for bilinear objectives!



Training Oscillations:
persistence under many variants of Gradient Descent 

from [Daskalakis, Ilyas, Syrgkanis, Zeng ICLR’18]



• Best-Case Scenario: Given convex-concave 𝑓(𝑥, 𝑦), solve: min
𝑥∈𝑋

max
𝑦∈𝑌

𝑓(𝑥, 𝑦)

• [von Neumann’28]: min-max=max-min; solvable via convex-programming

• Online Learning: if min and max players run any no-regret learning procedure 
they converge to minimax equilibrium

• E.g. follow-the-regularized-leader (FTRL), follow-the-perturbed-leader, MWU

• Follow-the-regularized-leader with ℓ2
2-regularization ≡ gradient descent

• “Convergence:” Sequence 𝑥𝑡, 𝑦𝑡 𝑡 converges to minimax equilibrium in the 

average sense, i.e. 𝑓
1

𝑡
σ𝜏≤𝑡 𝑥𝜏 ,

1

𝑡
σ𝜏≤𝑡 𝑦𝜏 → min

𝑥∈𝑋
max
𝑦∈𝑌

𝑓(𝑥, 𝑦)

• Can we show point-wise convergence of no-regret learning methods?

• [Mertikopoulos-Papadimitriou-Piliouras SODA’18]: No for any FTRL

Training Oscillations: 
Online Learning Perspective



• Variant of gradient descent: 
∀𝑡: 𝑥𝑡+1 = 𝑥𝑡 − 𝜂 ⋅ 𝛻𝑓 𝑥𝑡 + 𝜼/𝟐 ⋅ 𝛁𝒇(𝒙𝒕−𝟏)

• Interpretation: undo today, some of yesterday’s gradient; ie negative momentum

• Gradient Descent w/ negative momentum 

= Optimistic FTRL w/ ℓ2
2-regularization

[Rakhlin-Sridharan COLT’13, Syrgkanis et al. NeurIPS’15]

≈ extra-gradient method
[Korpelevich’76, Chiang et al COLT’12, Gidel et al’18, 
Mertikopoulos et al’18]

• Does it help in min-max optimization?

Negative Momentum



• E.g. 𝑓 𝑥, 𝑦 = 𝑥 − 0.5 ⋅ 𝑦 − 0.5

Negative Momentum: why it could help

: start

: min-max equilibrium

𝑥𝑡+1 = 𝑥𝑡 − 𝜂 ⋅ 𝛻𝑥𝑓 𝑥𝑡 , 𝑦𝑡
𝑦𝑡+1 = 𝑦𝑡 + 𝜂 ⋅ 𝛻𝑦𝑓 𝑥𝑡 , 𝑦𝑡

𝑥𝑡+1 = 𝑥𝑡 − 𝜂 ⋅ 𝛻𝑥𝑓 𝑥𝑡 , 𝑦𝑡
+𝜼/𝟐 ⋅ 𝛁𝒙𝒇(𝒙𝒕−𝟏, 𝒚𝒕−𝟏)

𝑦𝑡+1 = 𝑦𝑡 + 𝜂 ⋅ 𝛻𝑦𝑓 𝑥𝑡 , 𝑦𝑡
−𝜼/𝟐 ⋅ 𝛁𝒚𝒇(𝒙𝒕−𝟏, 𝒚𝒕−𝟏)



• Optimistic gradient descent-ascent (OGDA) dynamics: 
∀𝑡: 𝑥𝑡+1 = 𝑥𝑡 − 𝜂 ⋅ 𝛻𝑥𝑓 𝑥𝑡 , 𝑦𝑡 +

𝜼

𝟐
⋅ 𝛁𝐱𝒇 𝒙𝒕−𝟏, 𝒚𝒕−𝟏

𝑦𝑡+1 = 𝑦𝑡 + 𝜂 ⋅ 𝛻𝑦𝑓 𝑥𝑡 , 𝑦𝑡 −
𝜼

𝟐
⋅ 𝛁𝒚𝒇(𝒙𝒕−𝟏, 𝒚𝒕−𝟏)

• [Daskalakis-Ilyas-Syrgkanis-Zeng ICLR’18]: OGDA exhibits last iterate convergence 

for unconstrained bilinear games: min
𝑥∈ℝ𝑛

max
𝑦∈ℝ𝑚

𝑓 𝑥, 𝑦 = 𝑥T𝐴𝑦 + 𝑏𝑇𝑥 + 𝑐𝑇𝑦

• [Liang-Stokes’18]: …convergence rate is geometric if 𝐴 is well-conditioned, extends 
to strongly convex-concave functions 𝑓 𝑥, 𝑦

• E.g. in previous isotropic Gaussian case: 𝑋 ∼ 𝒩 3,4 , 𝐼2×2 , 𝐺𝜃 𝑍 = 𝜃 + 𝑍, 

𝐷𝑤 ⋅ = 𝑤,⋅

Negative Momentum: convergence



• Optimistic gradient descent-ascent (OGDA) dynamics: 
∀𝑡: 𝑥𝑡+1 = 𝑥𝑡 − 𝜂 ⋅ 𝛻𝑥𝑓 𝑥𝑡 , 𝑦𝑡 +

𝜼

𝟐
⋅ 𝛁𝐱𝒇 𝒙𝒕−𝟏, 𝒚𝒕−𝟏

𝑦𝑡+1 = 𝑦𝑡 + 𝜂 ⋅ 𝛻𝑦𝑓 𝑥𝑡 , 𝑦𝑡 −
𝜼

𝟐
⋅ 𝛁𝒚𝒇(𝒙𝒕−𝟏, 𝒚𝒕−𝟏)

• [Daskalakis-Ilyas-Syrgkanis-Zeng ICLR’18]: OGDA exhibits last iterate convergence 

for unconstrained bilinear games: min
𝑥∈ℝ𝑛

max
𝑦∈ℝ𝑚

𝑓 𝑥, 𝑦 = 𝑥T𝐴𝑦 + 𝑏𝑇𝑥 + 𝑐𝑇𝑦

• [Liang-Stokes’18]: …convergence rate is geometric if 𝐴 is well-conditioned, extends 
to strongly convex-concave functions 𝑓 𝑥, 𝑦

• [Daskalakis-Panageas ITCS’18]: Projected OGDA exhibits last iterate convergence 

even for constrained bilinear games: min
𝑥∈Δ𝑛

max
𝑦∈Δ𝑚

𝑥T𝐴𝑦

= all linear programming

Negative Momentum: convergence



Negative Momentum: in the Wild
• Can try optimism for non convex-concave min-max objectives 𝑓 𝑥, 𝑦

• Issue [Daskalakis, Panageas NeurIPS’18]: No hope that stable points of OGDA or 
GDA are only local min-max points 

• e.g. 𝑓 𝑥, 𝑦 = −
1

8
⋅ 𝑥2 −

1

2
⋅ 𝑦2 +

6

10
⋅ 𝑥 ⋅ 𝑦

• Nested-ness: Local Min-Max ⊆ Stable Points of GDA ⊆ Stable Points of OGDA

Gradient Descent-Ascent field



Negative Momentum: in the Wild
• Can try optimism for non convex-concave min-max objectives 𝑓 𝑥, 𝑦

• Issue [Daskalakis, Panageas NeurIPS’18]: No hope that stable points of OGDA or 
GDA are only local min-max points

• Local Min-Max ⊆ Stable Points of GDA ⊆ Stable Points of OGDA

• also [Adolphs et al. 18]: left inclusion

• Question: identify first-order method converging to local min-max w/ probability 1

• While this is pending, evaluate optimism in practice…

• [Daskalakis-Ilyas-Syrgkanis-Zeng ICLR’18]: propose optimistic Adam

• Adam, a variant of gradient descent proposed by [Kingma-Ba ICLR’15], 
has found wide adoption in deep learning, although it doesn’t always 
converge [Reddi-Kale-Kumar ICLR’18]

• Optimistic Adam is the right adaptation of Adam to “undo some of the 
past gradients”



Optimistic Adam on CIFAR10

• Compare Adam, Optimistic Adam, trained on CIFAR10, in terms of 
Inception Score

• No fine-tuning for Optimistic Adam, used same hyper-parameters 
for both algorithms as suggested in Gulrajani et al. (2017)
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• Statistical Challenges: 
• reducing sample requirements

• attaining statistical guarantees
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Generative Adversarial Networks (GANs)

𝑍 ∼ 𝑁(0, 𝐼)Simple 
Randomness

Generator: DNN w/ 
parameters 𝜃

Discriminator: DNN w/ 
parameters 𝑤

Hallucinated Images  
(from generator)

Real Images  
(from training set)

Real or Hallucinated

inf
𝜃
sup
𝑤

𝒇 𝜽,𝒘

expresses how well 
Discriminator distinguishes  
true from generated images

e.g. Wasserstein-GANs:
𝑓(𝜃,𝑤) = 𝔼𝑋∼𝑝𝑟𝑒𝑎𝑙 𝐷𝑤 𝑋 − 𝔼𝑍∼𝑁(0,𝐼) 𝐷𝑤 𝐺𝜃(𝑍)

• Inner sup (Discrimination) problem: a statistical estimation problem

– how close is 𝑝𝑟𝑒𝑎𝑙 and 𝑝𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑑 in distance defined by test functions expressible in the 
architecture of the discriminator?

– because training will fail to solve min-max problem to optimality, this distance won’t be 
truly minimized

• major statistical challenges:

– Certifying a trained GAN: how close is 𝑝𝑟𝑒𝑎𝑙 and 𝑝𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑑 in some distance of interest?

– Alleviating computational & statistical burden of discrimination

– Scaling up the dimensionality of generated distributions



• Certifying a trained GAN: how close is 𝑝𝑟𝑒𝑎𝑙 and 𝑝𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑑 in some distance of interest? 

• Fundamental Challenge: curse of dimensionality

• claim (birthday paradox): given sample access to dist’n 𝑃 over {0,1}𝑛, and 𝑄=Unif 
({0,1}𝑛), estimating Wasserstein(𝑃, 𝑄) to within ±1/4 requires Ω 2𝑛/2 samples

• for 𝑛=1000’s (e.g. CIFAR) 

⇝ infeasible, unless lower-dimensional structure in 𝑝𝑟𝑒𝑎𝑙 and 𝑝𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑑
is exploited

• Alleviating Computational & Statistical Burden of Discriminator:

⇝ infeasible, unless lower-dimensional structure in 𝑝𝑟𝑒𝑎𝑙 and 𝑝𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑑
is exploited

• Scaling-up Dimensionality of Generated Distribution (e.g. video generation):

⇝ infeasible, unless lower-dimensional structure in 𝑝𝑟𝑒𝑎𝑙 is exploited

GANs: Statistical Challenges



Lower-Dimensional Structure:
Bayesian Networks

• Probability distribution defined in terms of a DAG 𝐺 = (𝑉, 𝐸)

• Node 𝑣 associated w/ random variable  𝑋𝑣 ∈ Σ

• Distribution factorizable in terms of parenthood relationships

Pr(𝑥) =ෑ

𝑣

Pr𝑋𝑣|𝑋Π𝑣 𝑥𝑣|𝑥Π𝑣 , ∀𝑥 ∈ Σ𝑉

𝑋1

𝑋3

𝑋4

𝑋5

𝑋2

Pr Ԧ𝑥 = Pr x1 ⋅ Pr 𝑥2 ⋅ Pr 𝑥3 𝑥1, 𝑥2 ⋅ Pr 𝑥4 𝑥3 ⋅ Pr 𝑥5 𝑥3, 𝑥4]

Is it easier to discriminate between Bayes-nets 
whose structure is known?



BayesNet Discrimination

[Daskalakis-Pan COLT’17]: If 𝑑𝑖𝑠𝑡 is Total Variation distance, there exist 

computationally efficient testers using ෨𝑂
Σ 0.75 𝑑+1 𝑛

𝜀2
samples.

Moreover, the dependence on 𝑛, 𝜀 of both bounds is tight up to a O(log 𝑛) factor, and 
the exponential in 𝑑 dependence is necessary and essentially tight.

[Canonne et al. COLT’17]: Identify conditions  under which dependence on 𝑛 can be 
made 𝑛 when one of the two Bayesnets is known

Effective dimensionality is: n 𝑑

Bayesnet 𝑃 on 
DAG 𝐺 with:

- 𝑛 nodes
- in-degree 𝑑

Bayesnet 𝑄 on 
DAG 𝐺 with:

- 𝑛 nodes
- in-degree 𝑑

??

Goal: Given samples from 𝑃, 𝑄 and 𝜀, distinguish:  𝑃 = 𝑄 vs   𝑑𝑖𝑠𝑡 𝑃, 𝑄 > 𝜀



BayesNet Discrimination in TV
• Goal: distinguish 𝑃 = 𝑄 vs   𝑑𝑇𝑉 𝑃, 𝑄 > 𝜀

• Idea: distance localization

• prove statement of the form: “If BayesNets 𝑃 and 𝑄 are far in TV, there exists 
a small size witness set 𝑆 of variables such that 𝑃𝑆 and 𝑄𝑆, the marginals of 𝑃
and 𝑄 on variables 𝑆, are also somewhat far away”

• reduces the original problem to identity testing on small size sets whose 
distributions can be sampled

• Question: which distances are localizable?

• 𝐾𝐿 𝑃||𝑄 ≤ σ𝑣𝐾𝐿 𝑃𝑣∪Π𝑣||𝑄𝑣∪Π𝑣 (chain rule of KL) 

• 𝑑TV 𝑃, 𝑄 ≤ σ𝑣 𝑑TV 𝑃𝑣∪Π𝑣 , 𝑄𝑣∪Π𝑣 +σ𝑣 𝑑TV 𝑃Π𝑣 , 𝑄Π𝑣 (hybrid argument)

• 𝐻2 𝑃, 𝑄 ≤ σ𝑣𝐻
2 𝑃𝑣∪Π𝑣 , 𝑄𝑣∪Π𝑣



Wasserstein Subadditivity

Q: Does Wasserstein satisfy subadditivity 

Wass 𝑃, 𝑄 ≤

𝑣

Wass 𝑃𝑣∪Π𝑣||𝑄𝑣∪Π𝑣 ?

A: Not always; exist pair of Markov Chains:  𝑋 → 𝑌 → 𝑍 and 𝑋′ → 𝑌′ → 𝑍′ such that 
Wass 𝑋, 𝑌 , 𝑋′, 𝑌′ +Wass 𝑌, 𝑍 , 𝑌′, 𝑍′

Wass 𝑋, 𝑌, 𝑍 , 𝑋′, 𝑌′, 𝑍′

can be made arbitrarily small.

[Preliminary Result]: Wasserstein distance between two Markov Chains 𝑋1, … , 𝑋𝑇 and 
𝑌1, … , 𝑌𝑇 satisfies subbadditivity if the conditional densities 𝑓𝑿 𝑥𝑡 𝑥𝑡−1 and 
𝑓𝒀(𝑦𝑡|𝑦𝑡−1) are Lipschitz wrt 𝑥𝑡−1 and 𝑦𝑡−1 respectively, for all 𝑡.

(extends to Bayesian Networks)

Bayesnet 𝑃
on DAG 𝐺

Bayesnet 𝑄
on DAG 𝐺

??



Video Generation

Discriminate generated video against 
target distribution over videos
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Video Generation
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can exploit subadditivity and discriminate only pairs of consecutive frames of 
generated distribution against pairs of consecutive frames of target distribution

Disc1 Disc2 Disc3

N.B. resulting multi-player zero-sum game falls in realm of [D-Papadimitriou ICALP’09], 
[Even-Dar et al STOC’09], [Cai-D SODA’11], [Cai et al MATHOR’15]; efficient dynamics known

Gen

Disc1
Disc2

Disc3



Video Generation: experiment [Ilyas’18]

• Created random 4-frame videos of MNIST digits 
• in every training video, digits are weakly increasing in time

• Trained two video GANs: 
• a GAN w/ an un-factorized discriminator
• and a GAN w/ a factorized discriminator

• GANs must learn both how to hallucinate handwritten digits, 
and that they need to put them in increasing order

• Compare factorized vs unfactorized models in terms of accuracy



Conclusions

• Min-Max Optimization has found numerous applications in 
Optimization, Game Theory, Adversarial Training

• Applications to Generative Adversarial Networks pose serious 
challenges, of optimization (oscillations) and statistical (curse of 
dimensionality) nature

• We propose gradient descent with negative momentum as an 
approach to ease training oscillations

• We prove Wasserstein subadditivity in Bayesnets and propose 
modeling dependencies in the data as an approach to ease the 
curse of dimensionality

• Lots of interesting theoretical and practical challenges going 
forward



Thanks!
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