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Abstract

Curry’s Combinatory Logic is a functional calculus which may serve as a foundation to
the theory of computations, even to computational complexity. Combinatory Logic, which
is based on the two combinators S and K, is an undecidable theory. The theory based only
on S was proved decidable by Waldmann. We present a regular tree grammar and prove
that it exactly produces all normalizing S-terms. Thus, the complexity of deciding whether
an S-term X has a normal form is linear. Our grammar is equivalent to another one by
Waldmann, but in contrast to our grammar, the correctness of Waldmann’s grammar was
only proved with the help of computer programs.

1 Introduction

We call S-terms the elements of a system generated by one symbol S and one non-associative
and non-commutative (implicit) operation that we call application:

(i) S is an S-term.

(ii) If m1 and m2 are S-terms, (m1m2) is an S-term.

In this construction we say that m1 and m2 are proper sub-terms of the constructed S-term. S is
a sub-term of any S-term. Also, we say that an S-term is a sub-term of itself. We may abbreviate
by omitting parentheses by using left association. For example, we write SS(S(SSS))S instead
of (((SS)(S((SS)S)))S) and xyz = (xy)z 6= x(yz).

Here, we use lower case italic letters to represent S-terms. We use upper case calligraphic
letters to represent sets of S-terms. For any sets of S-terms A and C, we will write AC = { ac |
a ∈ A and c ∈ C }.

We define the length of an S-term to be the number of occurrences of the symbol S in the
term. For any S-term x, we write |x| to denote the length of x.

The reduction relation → is defined here by the S-rule:

Sxyz
def−→ xz(yz) .

The left hand side, Sxyz, is sometimes called redex and the right hand side, xz(yz), reductum.
For example, SSdc −→ Sc(dc). In general we write x → y if y can be written by replacing
some redex, sub-term, in x by the corresponding reductum of the S-rule.

The original motivation of this problem was the need to create a Functional Calculus in-
stead of Set Theory as a foundation for Theory of Computation, i.e., for Computability (Thue,
Schönfinkel [12], Curry [6, 7], Church [4], Turing, Markov) but even for Computational Com-
plexity. In such a functional calculus only one operation is needed: application f(g). We write
(fg) instead of f(g). Schönfinkel made the following observation: functions of one argument
are enough, e.g., f(g, h) = ((fg)h). We use left association for dropping some parentheses, i.e.,
instead of ((((fg)(h(gh)))((gh)((fh)f)))) we write fg(h(gh))(gh(fhf)). Many people have been
involved in similar investigations [17, 1, 2, 3, 8, 10, 11, 13, 15, 14, 9].

An example is the SK-Calculus or Combinatory Logic of H. Curry [6] which contains the sys-
tem with S-terms and the S-rule. It has the rules St1t2t3 → t1t3(t2t3) and Kt1t2 → t1. Actually
there are many other combinators and rewriting rules but the system {S,K} is complete.
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When reducing by the S-rule we eliminate one symbol S from an S-term and introduce a
replica of a sub-term in the S-term, hence, if x → y, |x| ≤ |y|. Thus a reduction step certainly
does not reduce the length of the S-term.

We use the abbreviations A
def
= SSS and B

def
= S(SS). Applying the S-rule twice we get:

Bad = S(SS)ad −→ SSd(ad) −→ S(ad)(d(ad)) ,

which we will write:

Bad
2−→ S(ad)(d(ad)) .

In general, for k ≥ 0, we write
k−→ to represent k reduction steps.

Here we describe other extensions of the relation →. The transitive closure of → is denoted
by

+−→ and its reflexive transitive closure is denoted by
∗−→. For two sets of S-terms X and Y,

we will write X → Y if for any x ∈ X we can apply the S-rule on some redex sub-term of x so
that x→ y for some y ∈ Y. Similarly, we will extend the other relations described above to sets
of S-terms.

We say that an S-term x is in normal form if the S-rule cannot be applied to any sub-term
of x, i.e., there is no redex in x. We say that x has a normal form and write x ↓ if x

∗−→ n for
some n in normal form; we write x ↑ otherwise, i.e., if x does not have a normal form, which is
equivalent to: there is a non-terminating reduction chain starting with x.

The question whether a given S-term is normalizable was answered positively in [16]:

Theorem 1. There is an algorithm that decides if a given S-term has a normal form.

A regular tree grammar is a tuple G = (I,N, F,R), where I is the axiom, N is the set of
non-terminal symbols (with I ∈ N), F is the set of terminal symbols, and R is the set of rules.
Moreover, each rule is of the form A ::= β, where A ∈ N and β is a tree on N ∪ F . Also, the
arity of all non-terminal symbols is 0. For more details and for the set of terms generated by a
regular tree grammar, see [5].

Waldmann [16] showed that the set of normalizable terms can be generated by a regular
tree grammar, but his proof relies on a computer program. In this paper, we give a regular tree
grammar generating exactly all normalizable S-terms and we provide a proof of its correctness
without a computer. As a result, since one can construct a deterministic tree automaton from
a regular tree grammar [5], it is possible to decide normalization of an S-term in linear time.

2 Notations

We first introduce some further notation.

Suppose x→ y. Then, for any sub-term z of y we will write x
◦−→ z. For example:

Sadc
◦−→ dc .

As extensions of
◦−→, we will denote its transitive closure by

⊕−→ and its reflexive transitive
closure by

∗�−→. Using this notation we have the following fact:

Suppose X ⊕−→ X . Then, there is an infinite reduction chain
starting with any x ∈ X , i.e., X ↑ .
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We are using a notation similar to that of regular expressions, e.g., we write S instead of
{S }, we write X + Y instead of X ∪ Y, etc. We define the sets M and N to be the (least)
solutions of the fixed point equations:

M def
= S +MM , and

N def
= S + SN + SNN .

That is, M is the set of all S-terms; N is the set of all S-terms that are in normal form. For
any set X we define X =M−X .

With this notation, we will also define the sets:

Q1
def
= S ,

Q2
def
= S + SS , and

Q3
def
= S + SS + S(SS) = S + SS +B .

So Q1 is the set of all S-terms of length greater than one; Q2 is the set of all S-terms of length
greater than two. Some immediate facts are:

Q1 = SS +Q2 ,

MQi ⊆ Qi+1 ⊆ Qi for i = 1 and i = 2, and

MQ3 ⊆ Q3 .

Since every redectum is in MMM ⊆ Q3 ⊆ Q2 ⊆ Q1, we can always write x → Qi for any
redex x (or any term x that has a redex!) and i = 1, 2, and 3.

For sets of S-terms A (the prefix set) and D (the base set) we recursively define (A)n[D] for
all n ≥ 0 with:

(A)0[D] = D and

(A)k+1[D] = A
(
(A)k[D]

)
for k ≥ 0 .

The set of all terms defined above is:

(A)∗[D] =
∑
n≥0

(A)n[D] = (A)0[D] + (A)1[D] + (A)2[D] + · · ·

which is the (least) solution of the fixed point equation:

(A)∗[D] = D + A
(
(A)∗[D]

)
.

Remark 1. The expressions defined above describe sets of normal forms when the prefix A ⊆
S + SN and the base D ⊆ N , e.g., (SN )1[N ] = SNN ⊆ N .

Example:

(SS +B)∗ [SN ] =

N + SS(SN ) +B(SN ) + SS(SS(SN )) + SS(B(SN )) +B(SS(SN )) +B(B(SN )) + · · ·
Remark 2. Whenever (A)∗[D] is defined so that D has no term also belonging to AM, if
ax ∈ (A)∗[D] for some a ∈ A, x ∈ (A)∗[D].

Using this notation we define:

E def
= (SS)∗[Q2Q1] .

Remark 3. Q1E = (SS + Q2)E = SSE + Q2E ⊆ E + Q2Q1 ⊆ E , i.e., for any q ∈ Q1, qE ⊆ E .
That way, we can say E = (Q1)

∗[Q2Q1].
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3 The grammar

The regular tree grammar has the axiom non-terminal symbol 〈N〉 (which generates all normal-
izable S-terms). It has the following rules. The proof of the correctness of the grammar is quite
lengthy and is given in the appendix.

〈N〉 ::= S | 〈L0〉 〈N〉 | 〈H0〉 〈L0〉 | 〈L1〉 〈H0〉 | 〈L2〉 〈L1〉 | 〈N
−S〉S | 〈L4〉 (S S )

〈H0〉 ::= S | S 〈N〉 | S S 〈H0〉 | B 〈H0〉 | 〈H
−S

0 〉S | 〈H
−SS

0 〉 (S S )

〈H−S

0 〉 ::= 〈H−SS

0 〉 | 〈K3〉

〈H−SS

0 〉 ::= 〈L−S

0 〉 | 〈L
−S

1 〉

〈L−S

0 〉 ::= 〈K0〉 | 〈K1〉

〈L−S

1 〉 ::= B | S B | S S 〈L−S

1 〉
〈K3〉 ::= 〈K2〉S | S S 〈K3〉

〈K2〉 ::= 〈K1〉 | S 〈L
−S

0 〉 | S S 〈K2〉
〈K1〉 ::= 〈K0〉S | S S 〈K1〉
〈K0〉 ::= S | 〈K1〉S | S S 〈K0〉
A ::= S S S

B ::= S (S S )

〈L0〉 ::= S | S 〈N〉 | 〈L−S

0 〉S | S S 〈L0〉

〈L1〉 ::= 〈L−S

1 〉S | S S 〈L1〉

〈L2〉 ::= B (S S ) | A (S S ) | BB | 〈L−S

2 〉S | S S 〈L2〉

〈L−S

2 〉 ::= 〈K4〉S | S S 〈L
−S

2 〉
〈K4〉 ::= B | S S 〈K4〉

〈L4〉 ::= S S 〈L4〉 | B 〈L4〉 | 〈L
−S

4 〉S | 〈L
−SS

4 〉 (S S )

〈L−S

4 〉 ::= 〈L−SS

4 〉 | 〈K6〉

〈L−SS

4 〉 ::= 〈K0〉S | S 〈H
−SS

0 〉 | S S 〈L−SS

4 〉
〈K6〉 ::= 〈K5〉S | S S 〈K6〉
〈K5〉 ::= 〈K0〉S | S 〈K0〉 | S S 〈K5〉

〈N −S〉 ::= S | S 〈N〉 | S 〈H−S

0 〉 〈L
−S

0 〉 | S 〈L
−S

1 〉 〈H
−S

0 〉 | S 〈L
−S

2 〉 〈L
−S

1 〉 | S 〈L
−S

4 〉S |

〈K0〉 〈L
−S

0 〉 | 〈J1〉B | 〈J2〉 〈L
−S

0 〉 | 〈J3〉S | 〈J4〉 〈L
−S

1 〉 | 〈L1〉S | 〈J5〉 (S S ) |

〈J6〉 〈L
−S

0 〉 | 〈J7〉S | 〈J9〉S | 〈J10〉S | 〈L
−S

2 〉 (S S ) | S 〈L−S

0 〉 〈N
−S〉

〈J1〉 ::= A

〈J2〉 ::= 〈K0〉S | S 〈H
−S

0 〉 | S S 〈J2〉

〈J3〉 ::= 〈K0〉S | S 〈L
−S

4 〉 | S S 〈J3〉
〈J4〉 ::= S S (S S ) | AS
〈J5〉 ::= S B (S S ) | S S 〈J5〉
〈J6〉 ::= B (S S ) | S S 〈J6〉
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〈J7〉 ::= 〈K4〉S | B 〈L
−S

0 〉 | S S 〈J7〉

〈J8〉 ::= S 〈L−S

0 〉 | S S 〈J8〉
〈J9〉 ::= 〈J8〉S | S S 〈J9〉

〈J10〉 ::= S S 〈J10〉 | S 〈L
−S

0 〉 〈L
−S

0 〉 | SS (SS) 〈L−S

0 〉 | AS 〈L
−S

0 〉 | B (SS) (SS) | 〈J11〉S

〈J11〉 ::= S S 〈J11〉 | S 〈K4〉 | S A 〈L
−S

0 〉 | S S (S S)A | AS A | 〈J12〉S
〈J12〉 ::= S S 〈J12〉 | S S (S A) | S A (S S)
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5

http://www.grappa.univ-lille3.fr/tata
http://www.grappa.univ-lille3.fr/tata


Checking in linear time if an S-term normalizes Cheilaris, Ramirez, and Zachos

Appendix

A Easy Facts

Proposition R. For sets of S-terms A, D, and C, (SA)∗[D] C ∗−→ (AC)∗[DC]. In particular,

(SA)∗[D] C ∗�−→ DC so, if DC ↑ , (SA)∗[D] C ↑ .

Proof. By induction. Inductive Base: (SA)0[D] C = DC = (AC)0[DC] .
Inductive Step: For k ≥ 0, if (SA)k[D] C k−→ (AC)k[DC],

(SA)k+1[D] C −→
(
AC
)(

(SA)k[D] C
) k−→

(
AC
)(

(AC)k[DC]
)

= (AC)k+1[DC] .

Now, we can prove some preliminary results on non-normalizing S-terms:

Claim 1. EE ↑ .

Proof. To prove that EE ↑ we will show that EE ⊕−→ EE . Using Proposition R, EE ∗−→
(SE)∗[Q2Q1E ]. Thus, it will suffice to show qQ1E → EE , for any q ∈ Q2. We need to consider
three cases:

(i) Suppose q /∈ N . Then, q has a redex, q → Q2, and qQ1E → Q2Q1E ⊆ EE .

(ii) Suppose q ∈ S(N ∩Q1). Then, qQ1E ∈ SQ1Q1E → Q1E(Q1E) ⊆ EE (from Remark 3).

(iii) Suppose q ∈ SNN . Then, qQ1E ∈ SNNQ1E → NQ1(NQ1)E ⊆ Q2Q1E ⊆ EE .

Claim 2. Q3Q2Q1 ↑ .

Proof. To prove that Q3Q2Q1 ↑ we will show that Q3Q2Q1
⊕−→ Q3Q2Q1 + EE . For q ∈ Q3 we

need to consider the following three cases:

(i) Suppose q /∈ N . Then, q has a redex, q → Q3, and aQ2Q1 → Q3Q2Q1.

(ii) Suppose q ∈ S(N ∩Q2). Then, qQ2Q1 ∈ SQ2Q2Q1 → Q2Q1(Q2Q1) ⊆ EE .

(iii) Suppose q ∈ SNN . Then, qQ2Q1 ∈ SNNQ2Q1 → NQ2(NQ2)Q1 ⊆ Q3Q2Q1.

Thus, in this technical preliminary session we established the following:

Corollary 1. (Q3Q2Q1 + EE) ↑

Recall: B = S(SS), Q3 = S + SS +B, Q2 = B+Q3, Q1 = SS+Q2, and E = (SS)∗[Q2Q1].

B Classification

For the proof of the theorem of this paper, we can limit ourselves to S-terms of the form NN .
That is because for any S-term m1m2 we can apply the algorithm recursively to m1 and m2

and answer no if either recursive call returns no, otherwise use the normal forms returned by
those calls. To do that, we proceed now to classify all S-terms in N into different classes H0,
H1, L0, L1, . . . Then, the theorem is achieved by dividing the result into proofs that cover all
combinations of normal forms from these classes. We will discuss the result such pairs, e.g., for
(H0,L0) whether H0L0 ↑ , in the next section.
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To dissect N , we first define the following disjoint sets:

H0
def
= (SS +B)∗ [S + SN + SBS + SB(SS)] and

H1
def
= (SS +B)∗ [Q3Q2 + SQ3M] .

Some easy facts are H0 ⊆ N , unlike H1, and H0, H1 are disjoint.

Claim 3. H0 and H1 cover N .

Proof. We will show H1 ∩N ⊆ H0 (in fact, H1 ∩N = H0).
First note that if x ∈ H1, SSx ∈ H1 and Bx ∈ H1. Contrapositively, if SSx ∈ H1

or Bx ∈ H1, x ∈ H1 must follow. Later, we will recall the previous statement as our initial
observation.

Now, we expand:

Q3Q2 = S + SM+ SSM+BM+MS +M(SS) and

SQ3M = S + SM+ SSM+BM+ SBM+Q1MM .

That way, we can compute:

H1 ∩N ⊆ (Q3Q2 + SQ3M ) ∩N = S + SN + SSN +BN + SBS + SB(SS) ,

since Q1MM⊆ N . Then, for any x ∈ H1 ∩N one of the following cases must apply:

(i) x ∈ S + SN + SBS + SB(SS) or

(ii) x ∈ SSN +BN .

Case (i) coincides with the base of H0. Suppose case (ii), i.e., x = SSx′ ∈ H1 or x = Bx′ ∈ H1

for some x′ ∈ N . Then, from our initial observation, x′ ∈ H1. This pops an equivalent choice
for x′. But case (ii) may apply recursively for only a finite number of times because each time
the size of the term is reduced. Eventually, case (i) must be attained. Therefore:

x ∈ (SS +B)∗[S + SN + SBS + SB(SS)] = H0 .

We further refine and dissect H1 into more mutually disjoint sets:

L0
def
= (SS)∗ [S + SN ] ,

L1
def
= (SS)∗ [BS + SBS] ,

L2
def
= (SS)∗ [B(SS) +BB] , and

L3
def
= (SS)∗ [SB(SS) +BQ3] .

Some easy facts are L012
def
= L0 + L1 + L2 ⊆ H0 and L0, L1, L2, L3 are mutually disjoint.

Claim 4. L0, L1, L2, and L3 cover H0.

Proof. We will show that: L3 ∩H0 ⊆ L012 —in fact L3 ∩H0 = L012.
First, note that if x ∈ L3, SSx ∈ L3. Contrapositively, if SSx ∈ L3, x ∈ L3 must follow.

Simultaneously, from the definition of H0 (and Remark 2), if SSx ∈ H0, x ∈ H0. So, if
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SSx ∈ L3 ∩ H0, x ∈ L3 ∩ H0 must follow. Later, we will recall the previous statement as our
initial observation.

Now, we expand:

BQ3 = S + SM+ SSM+Q3M+BS +B(SS) +BB .

That result combined with:

Q3M∩H0 = SBS + SB(SS)

facilitate the computation of:

L3 ∩H0 ⊆ (SB(SS) +BQ3 ) ∩H0 = S + SN + SSN + SBS +BS +B(SS) +BB .

Then, for any x ∈ L3 ∩H0 one of the following cases must apply:

(i) x ∈ S + SN +BS + SBS +B(SS) +BB or

(ii) x ∈ SSN .

Case (i) coincides with the base of L012. Suppose case (ii), i.e., x = SSx′ ∈ L3 ∩ H0 for some
x′ ∈ N . Then, from our initial observation, x′ ∈ L3 ∩H0. This pops an equivalent choice for x′.
But case (ii) may apply recursively for only a finite number of times because each time the size
of the term is reduced. Eventually, case (i) must be attained. Therefore:

x ∈ (SS)∗[S + SN +BS + SBS +B(SS) +BB ] = L012 .

From Claim 3 and Claim 4, we partition N according to the following diagram (the circle
represents N , double lines surround H0; notice that H1 and L3 intersect both inside and outside
of N , but that will not be a problem):

L3

L0 L1

L2H1

N :

=H0

8
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C The Proof

With these definitions and letting L23
def
= L2 + L3 and L123

def
= L1 + L2 + L3 we will prove

Theorem 1 by proving:

Part 1. L0N ↓
Part 2. H0 L0 ↓
Part 3. L1H0 ↓
Part 4. L2 L1 ↓

Part 5. L23 L23 ↑
Part 6. L3 L1 ↑
Part 7. H1Q2 ↑
Part 8. L123H1 ↑

Part 9. There is a method to reduce any term in N (S+SS) to

a form covered in one of Parts 1 through 8. In particular, for

any x ∈ (H1∩N )(S+SS) we can decide if x has a normal form.

Proof of Part 1. Using Proposition R (and Remark 1):

L0N = (SS)∗[S + SN ] N ∗−→ (SN )∗[SN + SNN ] ⊆ (SN )∗[N ] ⊆ N .

Proof of Part 2. We show H0L0 ↓ by induction on the structure of H0 and by using Part 1
(i.e., L0N ↓ ). We will abbreviate the base of H0: Θ = S + SN + SBS + SB(SS).

Inductive Base: We divide ΘL0 in the following cases:

(i) SL0 ⊆ SN ⊆ N .

(ii) SNL0 ⊆ SNN ⊆ N .

(iii) SBSL0 −→ BL0(SL0)
2−→ S(L0(SL0))(SL0(L0(SL0)))

[ Using Part 1, L0(SL0)
∗−→ N ]

∗−→ SN (SL0N ) ⊆ N .

(iv) SB(SS)L0 −→ BL0(SSL0)
[ Similar to (iii) ]

∗−→ SN (SSL0N ) −→ SN (SN (L0N ))

[ Using Part 1, L0N
∗−→ N ]

∗−→ SN (SNN )) ⊆ N .

Inductive Step: For k ≥ 0, we assume (SS +B)k[Θ]L0
∗−→ N . Then:

(v) SS
(
(SS+B)k[Θ]

)
L0 −→ SL0

(
(SS+B)k[Θ]L0

)
[ By inductive hypothesis ]

∗−→ SL0N ⊆ N .

(vi) B
(
(SS+B)k[Θ]

)
L0

2−→ S
(
(SS+B)k[Θ]L0

)(
L0
(
(SS+B)k[Θ]L0

))
[ By inductive hypothesis ]

∗−→ SN (L0N )

[ Using Part 1 ]
∗−→ SNN ⊆ N .

Proof of Part 3. We show L1H0 ↓ using Part 2 (i.e., H0L0 ↓ ). We start proving the claim for

9



Checking in linear time if an S-term normalizes Cheilaris, Ramirez, and Zachos

the base of L1 slit in two parts:

(i) BSH0
2−→ S(SH0)(H0(SH0))

[ using Part 2, H0(SH0)
∗−→ N ]

∗−→ S(SH0)N ⊆ N .

(ii) SBSH0 −→ BH0(SH0)
2−→ S(H0(SH0))(SH0(H0(SH0)))
∗−→ SN (SH0N ) ⊆ N .

Then, using Proposition R,

L1H0 = (SS)∗[BS + SBS]H0
∗−→ (SH0)

∗[BSH0 + SBSH0]
∗−→ (SN )∗[N ] ⊆ N .

Proof of Part 4. We show L2L1 ↓ using Part 3 (i.e., L1H0 ↓ ). We first prove the claim for the
base of L2 slit in two parts:

(i) B(SS)L1
2−→ S(SSL1)(L1(SSL1))

[ using Part 3, L1(SSL1)
∗−→ N ]

∗−→ S(SSL1)N ⊆ N .

(ii) BB L1
2−→ S(BL1)(L1(BL1))

[ using Part 3, L1(BL1)
∗−→ N ]

∗−→ S(BL1)N ⊆ N .

Now, using Proposition R,

L2L1 = (SS)∗[B(SS) +BB]L1
∗−→ (SL1)∗[B(SS)L1 +BBL1]

∗−→ (SN )∗[N ] ⊆ N .

Proof of Part 5. The claim L23L23 ↑ follows immediately from Claim 1 after proving: L23 =
L2 + L3 ⊆ E . But this follows directly by combining the statements:

(i) B(SS) +BB ⊆ Q2Q1 and

(ii) SB(SS) +BQ3 ⊆ Q2Q1 .

with the definition of L2 and L3 respectively.

Proof of Part 6. We will prove L3L1 ↑ by letting G = Q3Q2 and showing: L3L1
⊕−→ L1G

⊕−→
Q3Q2Q1 the result follows from that statement and Claim 2. First, to examine the base of L3,
we check:

(i) SB(SS)L1 −→ BL1(SSL1) ⊆ BQ3L1 and

(ii) BQ3L1
2−→ S(Q3L1)(L1(Q3L1))) .

Then, by Proposition R:

L3L1 ∗�−→ (SB(SS) +BQ3)L1
⊕−→ L1(Q3L1) ⊆ L1G .

Now we split the base of L1 in the two cases:

(iii) BSG 2−→ S(SG)(G(SG)) and

(iv) SBSG −→ BG(SG)
2−→ S(G(SG))(SG(G(SG))) .

Then, by Proposition R:

L1G ∗�−→ (BS + SBS)G ⊕−→ G(SG) ⊆ Q3Q2Q1 .

10
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Proof of Part 7. To prove H1Q2 ↑ we notice that: SQ3MQ2 → Q3Q2(MQ2) ⊆ Q3Q2Q1.
Then, by Proposition R,

H1Q2
∗�−→ (Q3Q2 + SQ3M)Q2

∗−→ Q3Q2Q1 .

This result combined with Claim 2 completes the proof.

Proof of Part 8. To prove L123H1 ↑ we first note that:

L123 ⊆ (SS)∗(BM+ SBM) .

So combining the cases:

(i) BMH1
2−→ S(MH1)(H1(MH1)) and

(ii) SBMH1 −→ BH1(MH1)
2−→ S(H1(MH1))((MH1)(H1(MH1)))

with Proposition R we get:

L123H1
∗�−→ (BM+ SBM)H1

⊕−→ H1(MH1) ⊆ H1Q2 .

This fact combined with Part 7 completes this proof.

Proof of Part 9. First, we will prove that for any S-term n ∈ N we can decide if n(SS) has
a normal form using induction on the size of n. As inductive base, if |n| = 1, n = S so
n(SS) = S(SS) is in normal form. For the inductive step, we suppose that the statement is
true for all S-terms of length ≤ k. Then, if |n| = k + 1 we need to check two cases:

(i) Suppose n = Sn1. Then, n(SS) = Sn1(SS) is in normal form.

(ii) Suppose n = Sn2n3. Then, n(SS) = Sn2n3(SS) → n2(SS)(n3(SS)). But by inductive

hypothesis, we can decide if n2(SS)
∗−→ n4 ∈ N and n3(SS)

∗−→ n5 ∈ N . If that is the

case, n(SS)
∗−→ n4n5 and we can decide if n4n5 has a normal form by one of Parts 1-8

(note that n5 6= SS because |n5| ≥ |n3(SS)| ). Otherwise, n does not have normal form.

A similar inductive proof shows that for any n ∈ N we can decide if nS has a normal form.
As inductive base, if |n| = 1, n = S so nS = SS is in normal form. For the inductive step, we
suppose that the statement is true for all S-terms of length ≤ k. Then, if |n| = k + 1 we need
to check two cases:

(i) Suppose n = Sn1. Then, nS = Sn1S is in normal form.

(ii) Suppose n = Sn2n3. Then, nS = Sn2n3S → n2S(n3S). But by inductive hypothesis we

can decide if n2S
∗−→ n4 ∈ N and n3S

∗−→ n5 ∈ N . If that is the case, nS
∗−→ n4n5 and

we can decide if n4n5 has a normal form by one of Parts 1-8 or the first part of this proof
(note that n5 6= S because |n5| ≥ |n3S| ). Otherwise, n does not have normal form.

D A Grammar for 〈H0〉
From this point on, we use the angle brackets 〈·〉 to denote the set of “predecessors” for a given
set. That is, for any set A,

〈A〉 def= {x ∈M | x ∗−→ A} .

11
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It is our objective to develop a context free grammar to recognize 〈N〉. Naturally, we will use
these sets of predecessors as non-terminal symbols in our grammar.

The terms in 〈N〉 are either S or terms of from 〈N〉〈N〉. To describe the terms of the second
form we use the classification of N into H0 and H1, and the further classification of H0 into L0,
L1, L2, and L3. With these classes, the applications described in Parts 1 through 9 cover all
possible terms in NN . Because of the incomplete nature of the result in Part 9 we need to the
define the following sets:

N −S def
= {n ∈ N | nS ∗−→ N } and

N −SS def
= {n ∈ N | n(SS)

∗−→ N } .

Then, the results from Parts 1-9 prove the sufficiency of:

〈N〉 ::= S | 〈L0〉 〈N〉 | 〈H0〉 〈L0〉 | 〈L1〉 〈H0〉 | 〈L2〉 〈L1〉 | 〈N
−S〉S | 〈N −SS〉 (S S )

(Here, the production symbol ::= can be substituted by equality when the disjunction symbols
| are substituted by union.) In this section we will expand 〈H0〉.

Before proceeding, we need:

Claim 5. The sets Q3Q2, SQ3M, and, by extension, H1 are closed under reduction, that is, if
a term in either set reduces, the resulting term lies in the same set.

Proof. If SSm or Bm has a redex, it must be a sub-term of m, otherwise SSm+Bm ⊆ SNN ,
i.e., each term would be in normal form already. So, we only need to show the result for Q3Q2

and SQ3M.

If m = Sm1m2 ∈ SQ3M has a redex, such redex must be a sub-term of m1, with m1 → m′1,
or a sub-term of m2, with m2 → m′2. Either way, m′ = Sm′1m2 or m′ = Sm1m

′
2 satisfies

m′ ∈ SQ3M because if m1 → m′1, m
′
1 ∈ Q3 —since S, SS, or B are no redecta.

If m = m1m2 ∈ Q3Q2 has a redex, such redex must be a sub-term of m1, with m1 →
m′1, a sub-term of m2, with m2 → m′2, or the redex is the entire term m1m2 = Sm3m4m2,
with m1 = Sm3m4. The cases m′ = m′1m2 and m′ = m1m

′
2 satisfy m′ ∈ Q3Q2 because in

either case m′1 ∈ Q3 or m′2 ∈ Q3 ⊆ Q3 because no redex reduces into S, SS, or B. Finally
m′ = m3m2(m4m2) also satisfies m′ ∈ Q3Q2 because both m3m2 and m4m2 ∈ Q3 because
m2 ∈ Q2.

The result above reveals that 〈H0〉 and Q3Q2 are disjoint. Since H0 ⊆ N , this fact is
equivalent to 〈H0〉 ⊆ (S+SS+B)〈N〉 + 〈N〉(S+SS). This will facilitate the grammatical
description of 〈H0〉. For this, we introduce the following sets:

H−S

0
def
= {n ∈ N | nS ∗−→ H0 } and

H−SS

0
def
= {n ∈ N | n(SS)

∗−→ H0 } .

Hence, we can describe 〈H0〉 completely with:

〈H0〉 ::= S | S 〈N〉 | S S 〈H0〉 | B 〈H0〉 | 〈H
−S

0 〉S | 〈H
−SS

0 〉 (S S )

because the application of other pairs of strings in 〈N〉〈N〉 results in H1. However, we are left

with the task of producing rules for 〈H−S

0 〉 and 〈H−SS

0 〉. We start with:

12
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Claim 6.
H−SS

0 = (SS)∗[S + SS +B + SB ] .

Proof. Easily, Proposition R verifies:

(SS)∗[S + SS +B + SB](SS)
∗−→ (B)∗[B + SS(SS) +B(SS) + SB(SS)] ⊆ H0 .

Suppose that n(SS)
∗−→ H0 for some n ∈ N = S + SN + SNN . For any n ∈ SQ3 we

have n(SS) ∈ SQ3M ⊆ H1, which is a contradiction. However, all n ∈ (S + SN ) − SQ3 =

S + SS + B + SB satisfy n(SS) ∈ B + SS(SS) + B(SS) + SB(SS) ⊆ H0, so n ∈ H−SS

0 . This

choice of values coincides with the base for the terms in H−SS

0 we want.
If n ∈ SNN , n = Sn1n2 for some n1, n2 ∈ N . Then, n(SS) → n1(SS)(n2(SS)). This

way, n1 = S, or else n1(SS)(n2(SS)) ∈ Q3Q2 ⊆ H1, which is a contradiction. With n = SSn2,

n(SS)→ B(n2(SS)) but this still requires n2(SS)
∗−→ H0. This means any term n ∈ H−SS

0 may

have SS as prefix any number of times, but its base must be some n′ ∈ (S + SN ) ∩H−SS

0 .

Readily, H−SS

0 ⊆ L0 ⊆ H0. We classify the terms in H−SS

0 as follows: S ∈ H−SS

0 ; the terms

in H−SS

0 of the form SN are SS + B + SB; and the terms in H−SS

0 of the form SNN are the

terms in SSH−SS

0 .

Claim 7.
{n ∈ N | n(SS)

∗−→ H−SS

0 } = S + SS .

Proof. Clearly, (S + SS)(SS) = B + SS(SS)
∗−→ H−SS

0 . Now, suppose n(SS)
∗−→ n1 for some

n ∈ N with n1 ∈ H
−SS

0 = (SS)∗[S + SS + B + SB]. Then, n1 ∈ H0, because H−SS

0 ⊆ H0, so

n(SS)
∗−→ H0 and n ∈ H−SS

0 . Then, n1 is within of normal forms reduced from H−SS

0 (SS),
i.e., n1 ∈ (B)∗[B + SS(SS) + B(SS) + SB(SS)] —using Proposition R. By comparing the
expressions that describe the sets where n1 belongs, we deduce n1 ∈ B + SS(SS), therefore
n ∈ S + SS.

Let

K0
def
= (SS)∗[S] , K1

def
= (SS)∗[SS] , and K01

def
= K0 +K1 = (SS)∗[S + SS] .

Claim 8.
{n ∈ N | nS ∗−→ H−SS

0 } = K01 .

Proof. Let G = {n ∈ N | nS ∗−→ H−SS

0 }. Suppose nS
∗−→ H−SS

0 for some n ∈ N = S + SN +
SNN .

If n ∈ SNN , n = Sn1n2 for some n1, n2 ∈ N . Then, nS → n1S(n2S). This way, n1 = S or
n2 = S, otherwise n1S(n2S) ∈ Q3Q2 ⊆ H1, which is a contradiction. If n1 = S, n = SSn2 and

nS → SS(n2S). Recalling that the only terms in H−SS

0 of the form SNN are in SSH−SS

0 we

find that we still require n2S
∗−→ H−SS

0 . By this means we conclude that any term n ∈ G may
have SS as prefix any number of times, but its base must be some n′ ∈ (S + SN + SNS) ∩ G.

We check the base for the terms in G in three steps. First, we check S ∈ G by recalling
SS ∈ H−SS

0 . Second, if n ∈ SN , n = Sn3, for some n3 ∈ N , and nS = Sn3S ∈ SNN . However

the only terms in H−SS

0 of the form SNN are in SSH−SS

0 . Thus nS = SSS and n = SS. Third,

if n ∈ SNS, n = Sn1S, for some n1 ∈ N , and nS −→ n1S(SS)
∗−→ H−SS

0 . Hence, because
of Claim 7, n1S ∈ S + SS, n1 = S, and n = SSS. Summarizing, (S + SN + SNS) ∩ G =
S + SS + SSS. This checks that the base for the terms in G is as we want.
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Claim 9.
H−S

0 = (SS)∗[S + SS +B + SB + SK01 S ] .

Proof. Using Claim 8 we show: SK01SS −→ K01S(SS)
∗−→ H−SS

0 (SS)
∗−→ H0. Then, Propo-

sition R verifies:

(SS)∗[S + SS +B + SB + SK01S ]S
∗−→

(SS)∗[SS + SSS +BS + SBS + SK01SS ]
∗−→ (SS)∗[H0] ⊆ H0 .

Suppose that nS
∗−→ H0 for some n ∈ N = S + SN + SNN . If n ∈ SNN , n = Sn1n2

for some n1, n2 ∈ N . Then, nS → n1S(n2S). This way n1 = S or n2 = S, otherwise
n1S(n2S) ∈ Q3Q2 ⊆ H1, which is a contradiction. If n1 = S, n = SSn2 and nS → SS(n2S),

but we still require n2S
∗−→ H0. This means any term n ∈ H−S

0 may have SS as prefix any

number of times, but its base must be some n′ ∈ (S + SN + SNS) ∩H−S

0 .

If n = Sn1S ∈ SNS, nS → n1S(SS) ∈ H0. Thus n1S ∈ H
−SS

0 , n1 ∈ K01, and n ∈ SK01S.
For any n ∈ SQ3 we have nS ∈ SQ3M ⊆ H1, which is a contradiction. However, for all
n ∈ (S + SN )− SQ3 = S + SS + B + SB we have nS ∈ SS + SSS + BS + SBS ⊆ H0. This

checks that the base for the terms in H−S

0 is as we want.

We can define L−S

0 , L−S

1 , L−S

2 , and L−S

3 in a manner similar to that of H−S

0 . I.e.,

L−S

i
def
= {n ∈ N | nS ∗−→ Li }

for i = 0, 1, 2, 3. With these definitions:

Corollary 2.

L−S

0 = (SS)∗[S + SS] = K01 ,

L−S

1 = (SS)∗[B + SB] ,

L−S

2 = (SS)∗[BS] ⊆ (SS)∗[SK01 S] , and

L−S

3 = (SS)∗[SK01 S]− (SS)∗[SSS]− (SS)∗[BS] .

Proof. This partition of H−S

0 may be verified by direct computation and using Proposition R.

For any S-term m if m = mlmr for some terms ml and mr, we say mr is a right sub-term
of m. We extend the notion of right sub-term to include its reflexive transitive closure. We now
show some results about right sub-term ahead.

Claim 10. Given any S-term m. For any m′ such that m
∗−→ m′, every n ∈ N that is a right

sub-term of m is also a right sub-term of m′.

Proof. Without loss of generality, we can assume m = m1m2 ∈M for some m1,m2 and m→ m′.
With this assumption, the right sub-term n must be a right sub-term of m2. In this reduction,
the redex must be a sub-term of m1, with m1 → m′1, a sub-term of m2, with m2 → m′2, or the
redex is the entire term, m1m2 = Sm3m4m2, with m1 = Sm3m4. In the first case m′ = m′1m2

and n is readily a right sub-term of m′1m2. In the second case m′ = m1m
′
2, we assume that we

can recursively prove the claim for m2. Then, n is a right-sub-term of m′2 and thus it is a right
sub-term of m1m

′
2. In the third case m′ = m3m2(m4m2), clearly n is a right sub-term of m4m2

and also of m′.
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Corollary 3. For any n ∈ N , suppose mc
∗−→ n for some m ∈ M and c ∈ N . Then, c is a

right sub-term of n.

Corollary 4. Suppose m is the redectum reduced from some redex Sadc with c ∈ N and
m

∗−→ m1m2. Then c is a proper right sub-term of both m1 and m2.

Remark 4. Given A = (SS)∗[D] with D ⊆ N , suppose xy
∗−→ A for some x and y. Then, either

xy
∗−→ D, or x = SS, or y = S. This is justified as follows: The first two options are trivial. If

none of those two options are satisfied, we would face the reduction xy
∗−→ SSa ∈ A (for some

a ∈ A !). In such case, Corollary 4 imposes the third choice by stating (the normal form of)
y is a proper right sub-term of SS. (Note for any d ∈ D, we can search for all pairs (x, y) so

that xy
∗−→ d by exhausting all pairs that satisfy |xy| ≤ |d|.)

Corollary 4 shows that no term is SNS is a redectum. Neither terms in S + SN are
redecta. After this, Remark 4 above establishes how to determine all xy such that xy

∗−→
(SS)∗[S + SN + B + SB + SL−S

0 S] = H−S

0 (recall Claim 9 and Corollary 2). For instance,
let:

K2
def
= (SS)∗[S L−S

0 ] and K3
def
= (SS)∗[S L−S

0 S] .

For these, Proposition R tells us:
K2 S

∗−→ K3 .

while Remark 4 ensures no other reductions result in K3. That ensures the sufficiency of:

〈K3〉 ::= 〈K2〉S | S S 〈K3〉

This way, we can produce a “complete” context free grammar for 〈H0〉 using on the following
set of rules:

(i) 〈H0〉 ::= S | S 〈N〉 | S S 〈H0〉 | B 〈H0〉 | 〈H
−S

0 〉S | 〈H
−SS

0 〉 (S S )

(ii) 〈H−S

0 〉 ::= 〈H−SS

0 〉 | 〈K3〉

(iii) 〈H−SS

0 〉 ::= 〈L−S

0 〉 | 〈L
−S

1 〉

(iv) 〈L−S

0 〉 ::= 〈K0〉 | 〈K1〉

(v) 〈L−S

1 〉 ::= B | S B | S S 〈L−S

1 〉

(vi) 〈K3〉 ::= 〈K2〉S | S S 〈K3〉

(vii) 〈K2〉 ::= 〈K1〉 | S 〈L
−S

0 〉 | S S 〈K2〉

(viii) 〈K1〉 ::= 〈K0〉S | S S 〈K1〉

(ix) 〈K0〉 ::= S | 〈K1〉S | S S 〈K0〉

(x) B ::= S (S S )

Our grammar for 〈N〉 also needs rules for 〈L0〉, 〈L1〉, and 〈L2〉. These rules also follow

easily after Remark 4. We have shown already L−S

0 , L−S

1 , and L−S

2 in Corollary 2. Indeed,

we already have rules for 〈L−S

0 〉 and 〈L−S

1 〉. However, L−S

2 is simply presented as a subset of K3.
For that reason, we introduce:

K4
def
= (SS)∗[B] .
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Then (note SSS(SS)→ BB ∈ L2 but no xy → B(SS) !),

(xi) 〈L0〉 ::= S | S 〈N〉 | 〈L−S

0 〉S | S S 〈L0〉

(xii) 〈L1〉 ::= 〈L−S

1 〉S | S S 〈L1〉

(xiii) 〈L2〉 ::= B (S S ) | S S S (S S ) | BB | 〈L−S

2 〉S | S S 〈L2〉

(xiv) 〈L−S

2 〉 ::= 〈K4〉S | S S 〈L
−S

2 〉

(xv) 〈K4〉 ::= B | S S 〈K4〉

E Beyond H0: The sets N −S

and N −SS

Recall:
N −S def

= {n ∈ N | nS ∗−→ N } and

N −SS def
= {n ∈ N | n(SS)

∗−→ N } .

Since S+SS ⊆ L0, Part 2, H0 L0 ↓ , easily shows H0 ⊆ N
−S

and H0 ⊆ N
−SS

. Now, we proceed
to complete the representation of the terms in N −SS

. Let:

L4
def
= (SS +B)∗[SH−SS

0 (S + SS)] .

We will show N −SS
= H0 + L4. After this, we can revise the grammatical rule for 〈N〉 to:

〈N〉 ::= S | 〈L0〉 〈N〉 | 〈H0〉 〈L0〉 | 〈L1〉 〈H0〉 | 〈L2〉 〈L1〉 | 〈N
−S〉S | 〈L4〉 (S S )

Indeed, we show:

Part 10.
L4(SS) ↓ and (H1∩N − L4) (SS) ↑ .

Proof. Recalling Part 2, H0 L0 ↓ ,

SH−SS

0 (S + SS) (SS) −→ (H−SS

0 (SS)) (S(SS) + SS(SS))
∗−→ H0 L0

∗−→ N .

Then, the base of L4, SH
−SS

0 (S + SS) ⊆ N −SS
. To extend this to the rest of L4,

BN −SS
(SS)

2−→ S (N −SS
(SS)) (SS (N −SS

(SS)))
∗−→ SN (SSN ) ⊆ N and

SSN −SS
(SS) −→ B (N −SS

(SS))
∗−→ BN ⊆ N

prove (SS + B)N −SS ⊆ N −SS
, which generalizes to (SS + B)∗[N −SS

] ⊆ N −SS
. This expands

our initial result for the base of L4 to L4 ⊆ N
−SS

and equivalently L4(SS) ↓ .
Now, we have to show (H1∩N − L4) (SS) ↑ . Because of Proposition R, we only need to

show ((SQ3M + Q3Q2) ∩ N − L4) (SS) ↑ . Clearly, Q3Q2∩ N − L4 ⊆ Q3Q2. Then, (Q3Q2∩
N −L4)(SS) ↑ because of Claim 2, Q3Q2Q1 ↑ , and SS ∈ Q1. We have left to show (SQ3M∩
N −L4) (SS) ↑ . For that purpose, we show that n ∈ SQ3M∩N

−SS
only if n ∈ L4.

Let n ∈ SQ3M ∩ N
−SS

. We can write n = Sn1n2 for some n1 ∈ Q3∩ N and n2 ∈ N .
Suppose n2 ∈ S + SS. Then, n = Sn1n2 ∈ Q3Q2 and if so, n(SS) ↑ , because of Claim 2.

16



Checking in linear time if an S-term normalizes Cheilaris, Ramirez, and Zachos

Hence, n2 ∈ S+SS, so n ∈ Sn1(S+SS). To satisfy n1 ∈ Q3∩N we have two choices: n1 = Sn3
for some n3 ∈ Q2∩N , or n1 = Sn4n5 for some n4, n5 ∈ N . In the first case, n1 = Sn3 for some
n3 ∈ Q2∩N , we have:

n(SS) ∈ S(Sn3)(S + SS)(SS) −→ S n3 (SS) ((S + SS)(SS)) −→
n3 ((S + SS)(SS)) (SS((S + SS)(SS))) .

If n3 ∈ Q3 the reduction above would show n(SS)
2−→ Q3Q2Q1 and so n(SS) ↑ , which is a

contradiction. Therefore n3 ∈ Q2 −Q3 = B, so

n ∈ S(SB)(S + SS) ⊆ SH−SS

0 (S + SS) ⊆ L4 .

In the second case, with n1 = Sn4n5 for some n4, n5 ∈ N ,

n(SS) ∈ S(Sn4n5)(S + SS)(SS) −→ S n4 n5 (SS) ((S + SS)(SS)) −→
n4 (SS) (n5(SS)) ((S + SS)(SS)) .

If n4 ∈ Q1 the reduction above would show n(SS)
2−→ Q3Q2Q1 and so n(SS) ↑ , which is a

contradiction. Thus n4 ∈ N −Q1 = S, so

n(SS)
2−→ B (n5(SS)) ((S + SS)(SS))

Let n′5 ∈ N be such that n5(SS)
∗−→ n′5. Either n′5 ∈ H0 or n′5 ∈ H1∩ N . If n′ ∈ H1 the

reduction above would show n(SS)
+−→ H1Q2 and so, because of Part 7, n(SS) ↑ , which is a

contradiction. Therefore n′5 ∈ H0 and equivalently n5 ∈ H
−SS

0 , so

n ∈ S(SSH−SS

0 )(S + SS) ⊆ SH−SS

0 (S + SS) ⊆ L4 .

Corollary 5.

H1∩N
−SS

= (SS +B)∗[S(SB + SSH−SS

0 )(S + SS)] .

The right sub-terms of L4 are S, SS, and L4. Because of Corollary 3, for the grammar
of 〈L4〉 we only need to describe the sets:

L−S

4
def
= {n ∈ N | nS ∗−→ L4 } and

L−SS

4
def
= {n ∈ N | n(SS)

∗−→ L4 }

so we could write:

〈L4〉 ::= S S 〈L4〉 | B 〈L4〉 | 〈L
−S

4 〉S | 〈L
−SS

4 〉 (S S )

We start by proving:

Claim 11.

L−SS

4 = (SS)∗[SH−SS

0 ] .
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Proof. Easily, Proposition R verifies:

(SS)∗[SH−SS

0 ] (SS)
∗−→ (B)∗[SH−SS

0 (SS)] ⊆ L4 .

For the complement, assume that n(SS)
∗−→ H0 for some n ∈ N = S + SN + SNN . Clearly

n 6= S because S(SS) /∈ L4. Suppose n ∈ SN . Then, n(SS) ∈ SN (SS) so n(SS) ∈ SH−SS

0 (SS)

and n ∈ SH−SS

0 . Suppose n ∈ SNN . Then, n = Sn1n2 for some n1, n2 ∈ N and n(SS) →
n1(SS)(n2(SS)). For this, n1 = S, because otherwise, n1(SS)(n2(SS)) ∈ Q3Q2 but, Q3Q2 being
closed under reduction (Claim 5) and L4 being a subset of (SS+B)N +N (S+SS) make that

a contradiction. With n = SSn2, n(SS) → B(n2(SS)) but this still requires n2(SS)
∗−→ L4.

This means any term n ∈ L−SS

4 may have SS as prefix any number of times but eventually its

base must be some n′ ∈ (S + SN ) ∩ L−SS

4 .

Recall:

K0
def
= (SS)∗[S] ⊆ K01

def
= (SS)∗[S + SS] = L−S

0 .

Claim 12.

{n ∈ N | nS ∈ L−SS

4 } = K0 .

Proof. Easily, Proposition R verifies:

K0 S = (SS)∗[S]S
∗−→ (SS)∗[SS] ⊆ (SS)∗[SH−SS

0 ] = L−SS

4 .

For the complement, note that L−SS

4 ⊆ L0 so {n ∈ N | nS ∈ L−SS

4 } ⊆ L−S

0 = (SS)∗[S + SS].

But (SS)∗[SS]S
∗−→ (SS)∗[S], which is disjoint from L−SS

4 .

Claim 13.

L−S

4 = (SS)∗[SH−SS

0 + SK0S ] .

Proof. Using Claim 12 we show: SK0SS −→ K0S(SS)
∗−→ L−SS

4 (SS)
∗−→ L4. Easily, Propo-

sition R verifies:

(SS)∗[SH−SS

0 + SK0S ]S
∗−→ (SS)∗[SH−SS

0 S + SK0SS ]
∗−→ (SS)∗[L4] ⊆ L4 .

For the complement, assume nS
∗−→ H0 for some n ∈ N = S + SN + SNN . Clearly, n 6= S,

because SS /∈ L4. Suppose n ∈ SN . Then, nS ∈ SNS so nS ∈ SH−SS

0 S and n ∈ SH−SS

0 .
Suppose n ∈ SNN . Then, n = Sn1n2 for some n1, n2 ∈ N and nS → n1S(n2S). This needs
n1 = S or n2 = S, for otherwise n1S(n2S) ∈ Q3Q2 but, Q3Q2 being closed under reduction
(Claim 5) and L4 being a subset of (SS+B)N +N (S+SS) make that a contradiction. Suppose

n2 = S. Then, nS = Sn1SS → n1S(SS) so n1S ∈ L
−SS

4 and n1 ∈ K0, i.e., n ∈ SK0S. Suppose

n2 6= S. Then, n1 = S, nS = SSn2S → SS(n2S) but this still requires n2S
∗−→ L4. This means

any term n ∈ L−S

4 may have SS as prefix any number of times but eventually its base must be

some n′ ∈ (S + SN + SNS) ∩ L−S

4 .

Note L−SS

4 ⊆ L−S

4 and the difference L−S

4 − L
−SS

4 = (SS)∗[SK0S] ⊆ H−S

0 so {n ∈ N | nS ∗−→
H1 ∩ N

−SS } ⊆ L−SS

4 . Let:

K5
def
= (SS)∗[SK0] and K6

def
= (SS)∗[SK0 S] .

18



Checking in linear time if an S-term normalizes Cheilaris, Ramirez, and Zachos

Then, we can specify a grammar for 〈L4〉:

(xvi) 〈L4〉 ::= S S 〈L4〉 | B 〈L4〉 | 〈L
−S

4 〉S | 〈L
−SS

4 〉 (S S )

(xvii) 〈L−S

4 〉 ::= 〈L−SS

4 〉 | 〈K6〉

(xviii) 〈L−SS

4 〉 ::= 〈K0〉S | S 〈H
−SS

0 〉 | S S 〈L−SS

4 〉

(xix) 〈K6〉 ::= 〈K5〉S | S S 〈K6〉

(xx) 〈K5〉 ::= 〈K0〉S | S 〈K0〉 | S S 〈K5〉

Now, the only piece missing in our grammar for 〈N〉 is 〈N −S〉. To fill this gap, we first prove:

Part 11.

N −S
= (SL−S

0 )∗[S + SN + SH−S

0 L
−S

0 + SL−S

1 H
−S

0 + SL−S

2 L
−S

1 + SL−S

4 S ] .

Proof. Readily:

(S + SN + SH−S

0 L
−S

0 + SL−S

1 H
−S

0 + SL−S

2 L
−S

1 + SL−S

4 S) S
∗−→

SS + SNS + (H−S

0 S)(L−S

0 S) + (L−S

1 S)(H−S

0 S) + (L−S

2 S)(L−S

1 S) + (L−S

4 S)(SS)
∗−→

SS + SNS +H0L0 + L1H0 + L2L1 + L4(SS)
∗−→ N ,

because of Parts 2, 3, 4 and 10. Thus,

S + SN + SH−S

0 L
−S

0 + SL−S

1 H
−S

0 + SL−S

2 L
−S

1 + SL−S

4 S ⊆ N
−S
.

Now,
SL−S

0 N
−S
S −→ (L−S

0 S)(N −S
S)

∗−→ L0N
∗−→ N

because of Part 1. Induction based on this gives us:(
(SL−S

0 )∗[N −S
]
)
S

∗−→ N .

Therefore,

(SL−S

0 )∗[S + SN + SH−S

0 L
−S

0 + SL−S

1 H
−S

0 + SL−S

2 L
−S

1 + SL−S

4 S ] ⊆ N −S
.

Obviously,

S + SN ⊆ (SL−S

0 )∗[S + SN + SH−S

0 L
−S

0 + SL−S

1 H
−S

0 + SL−S

2 L
−S

1 + SL−S

4 S ] .

We need to prove for n ∈ N −S ∩ SNN ,

n ∈ (SL−S

0 )∗[S + SN + SH−S

0 L
−S

0 + SL−S

1 H
−S

0 + SL−S

2 L
−S

1 + SL−S

4 S ] .

For n ∈ N −S
suppose n = Sn1n2 for some n1, n2 ∈ N . Then, nS → (n1S)(n2S). Let

n′1, n
′
2 ∈ N be such that n1S

∗−→ n′1 and n2S
∗−→ n′2, so nS

∗−→ n′1n
′
2. Now we recall the

covering of N by H0 and H1, and the further covering of H0 by L0, L1, L2, and L3. With this
coverings we can safely state

n′1n
′
2 ∈ L0N +H0L0 + L1H0 + L2L1 + L23L23 + L3L1 +H1Q2 + L123H1 +H1(S+SS) .
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The terms at the right are the the expressions in Parts 1-9. We cover the alternatives from
these terms leaving L0N to be the last.

The alternatives n′1n
′
2 ∈ H0L0 + L1H0 + L2L1 occur only if n = Sn1n2 ∈ SH−S

0 L
−S

0 +

SL−S

1 H
−S

0 + SL−S

2 L
−S

1 . The alternatives n′1n
′
2 ∈ L23L23 + L3L1 +H1Q2 + L123H1 imply n′1n

′
2 ↑

because of Parts 5 through 8, but this is a contradiction, so we reject them. The alternative
n′1n

′
2 ∈ H1(S+SS) forces n′2 = SS and so, because of Part 10, n′1 ∈ L4. Therefore, n1 ∈ L

−S

4

and n ∈ SL−S

4 S. This far, we have shown for n ∈ N −S ∩ SNN ,

n ∈ SH−S

0 L
−S

0 + SL−S

1 H
−S

0 + SL−S

2 L
−S

1 + SL−S

4 S or nS
∗−→ L0N .

Finally, the alternative n′1n
′
2 ∈ L0N needs n1 ∈ L

−S

0 and n2 ∈ N
−S

, i.e., n ∈ SL−S

0 N
−S

. This

means that n may have any number of prefixes from SL−S

0 but ultimately its base must be some

n′ ∈ N −SS
covered by the previous alternatives or n′ ∈ S + SN . Therefore,

N −S ⊆ (SL−S

0 )∗[S + SN + SH−S

0 L
−S

0 + SL−S

1 H
−S

0 + SL−S

2 L
−S

1 + SL−S

4 S ] .

Remark 5. Recall H0 ⊆ N
−S ∩N −SS

. Now, we can easily check:

L4 = (SS +B)∗[SH−SS

0 (S + SS)] ⊆ (SL−S

0 )∗[SH−S

0 L
−S

0 ] ⊆ N −S
.

It is no surprise N −SS ⊆ N −S
.

After this result, to investigate 〈N −S〉 we only need investigate the redexes that reduce

into N −S
. Suppose n1n2 is a redex with n1, n2 ∈ N , and n1n2

+−→ n0 ∈ N
−S

. Since n0 is
a redectum, n0 /∈ S + SN + SNS. Then, from the expression for N −S

in Part 11, n0 ∈
SL−S

0 N
−S

+ SH−S

0 L
−S

0 + SL−S

1 H
−S

0 + SL−S

2 L
−S

1 . In short, n1n2
+−→ SH−S

0 N
−S

. We proceed to

analyze exhaustively the choices for n1: We have either n1 ∈ H0, or n1 ∈ H1 ∩ N
−SS

and
n2 = SS, or n1 ∈ H1 ∩N

−S
and n2 = S.

#1. Suppose n1 ∈ H0. We need to examine various cases from n1 ∈ (SS)∗[S + SN + SBS +
SB(SS) +BH0]:

(i) Suppose n1 ∈ (SS)∗[S]. If n1 = S, the S-term n1n2 ∈ SN (⊆ N −S
!) is not a redex. Then,

we are supposing n1 = (SS)k+1[S] = SS
(
(SS)k[S]

)
for some k ≥ 0. Then,

n1n2 = SS
(
(SS)k[S]

)
n2 −→ Sn2

(
(SS)k[S]n2

) ∗−→

SL−S

0 N
−S

+ SH−S

0 L
−S

0 + SL−S

1 H
−S

0 + SL−S

2 L
−S

1 ⊆ N −S
.

Therefore, either n2 ∈ L
−S

0 (and (SS)k[S]n2
∗−→ N −S

) or (SS)k[S]n2
∗−→ H−S

0 .

• Suppose n2 ∈ L
−S

0 . Then, we may verify:

n1 n2 ∈ (SS)∗[S] L−S

0
∗−→ (SL−S

0 )∗[SL−S

0 ] ⊆ (SL−S

0 )∗[SN ] ⊆ N −S
.

• Suppose (SS)k[S]n2
∗−→ H−S

0 and n2 /∈ L
−S

0 . Recalling H−S

0 = (SS)∗[S+SS+B+SB+

SL−S

0 S ] and the rules for 〈H−S

0 〉, we determine this needs (SS)k[S] = S and n2 = B.
Given this, we verify:

n1 n2 = (SSS)B −→ SB(SB) ⊆ SL−S

1 H
−S

0 ⊆ N −S
.
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(ii) Suppose n1 ∈ (SS)∗[Sn′1] for some n′1 ∈ N . If n1 = Sn′1, the S-term n1n2 ∈ SNN is
not a redex (the allowed values for n′1 and n2 can be found in Part 11). Then, we are
supposing n1 = (SS)k+1[Sn′1] = SS

(
(SS)k[Sn′1]

)
for some k ≥ 0. Then,

n1 n2 = SS
(
(SS)k[Sn′1]

)
n2 −→ Sn2

(
(SS)k[Sn′1]n2

) ∗−→

SL−S

0 N
−S

+ SH−S

0 L
−S

0 + SL−S

1 H
−S

0 + SL−S

2 L
−S

1 ⊆ N −S
.

Therefore, either n2 ∈ L
−S

0 (and (SS)k[Sn1]n2
∗−→ N −S

) or (SS)k[Sn1]n2
∗−→ H−S

0 .

• Suppose n2 ∈ L
−S

0 . Then,

n1 n2 ∈ (SS)∗[Sn′1] L
−S

0
∗−→ (SL−S

0 )∗[Sn′1L
−S

0 ] ⊆ (SL−S

0 )∗[Sn′1L
−S

0 ] ⊆ N −S
.

However, from Part 11, for the above statement, we need to match,

Sn′1L
−S

0 ⊆ SL−S

0 N
−S

+ SH−S

0 L
−S

0 + SL−S

1 H
−S

0 + SL−S

2 L
−S

1 + SL−S

4 S .

This is satisfied only if n′1 ∈ H
−S

0 , for any n2 ∈ L
−S

0 , or if n′1 ∈ L
−S

4 , for the particular

case of n2 = S ∈ L−S

0 . These alternatives are verified with:

n1 n2 ∈ (SS)∗[SH−S

0 ] L−S

0
∗−→ (SL−S

0 )∗[SH−S

0 L
−S

0 ] ⊆ N −S
and

n1 n2 ∈ (SS)∗[SL−S

4 ]S
∗−→ (SL−S

0 )∗[SL−S

4 S] ⊆ N −S
.

• Suppose (SS)k[Sn′1]n2
∗−→ H−S

0 and n2 /∈ L−S

0 . Then, (SS)k[Sn′1] = SS and n2 ∈
H−S

0 −L
−S

0 . With n1 = SS(SS) and n2 ∈ L
−S

i for i = 1, 2, or 3,

n1 n2 ∈ SS(SS)L−S

i −→ SL−S

i (SSL−S

i ) ⊆
SL−S

0 N
−S

+ SH−S

0 L
−S

0 + SL−S

1 H
−S

0 + SL−S

2 L
−S

1 ⊆ N −S
.

This is only satisfied when i = 1 (note i = 0 is not an option now!). Then, we may
verify,

n1 n2 ∈ SS(SS)L−S

1 −→ SL−S

1 H
−S

0 ⊆ N −S
.

(iii) Suppose n1 ∈ (SS)∗[SBS]. Then,

n1 n2 = (SS)∗[SBS]n2
∗−→ (Sn2)

∗[SBS n2]
∗−→ N −S

.

For this, we need to verify SBS n2
∗−→ N −S

first:

SBS n2 −→ Bn2(Sn2)
2−→

S
(
n2(Sn2)

) (
Sn2(n2(Sn2))

) ∗−→ SH−S

0 N
−S
.

Thus, n2(Sn2)
∗−→ H−S

0 . To satisfy this, we need n2 ∈ S + SS. This being provided, we

can verify SBS n2
∗−→ N −S

with:

SBSS
∗−→ SB(SSB) ∈ SL−S

1 H
−S

0 ⊆ N
−S

but

SBS(SS) /∈ 〈N −S〉, because SBS(SS)S ↑ (proof from part 8 after some reductions).

Therefore, given n1 ∈ (SS)∗[SBS], only for n2 = S we may verify:

n1 n2 ∈ (SS)∗[SBS]S
∗−→

(SS)∗[SBS S]
∗−→ (SL−S

0 )∗[N −S
] ⊆ N −S

.
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(iv) Suppose n1 = (SS)∗[SB(SS)]. Then:

n1 n2 = (SS)∗[SB(SS)]n2
∗−→ (Sn2)

∗[SB(SS)n2]
∗−→ N −S

.

For this, we need to verify SB(SS)n2
∗−→ N −S

first:

SB(SS)n2 −→ Bn2(SSn2)
2−→ S

(
n2(SSn2)

) (
SSn2(n2(SSn2))

)
−→

S
(
n2(SSn2)

) (
S (n2(SSn2))

(
n2(n2(SSn2))

)) ∗−→ SH−S

0 N
−S
.

Thus, n2(SSn2)
∗−→ H−S

0 , but for this we need n2 = SS. Then:

SB(SS)n2
∗−→ S

(
SS(SS(SS))

) (
S (SS(SS(SS)))

(
SS(SS(SS(SS)))

))
∈

(SL−S

0 )∗[SH−S

0 L
−S

0 ] ⊆ N −S
.

Therefore, given n1 ∈ (SS)∗[SB(SS)], only for n2 = SS we may verify:

n1 n2 ∈ (SS)∗[SB(SS)] (SS)
∗−→

(S(S+SS))∗[SB(SS) (SS)]
∗−→ (SL−S

0 )∗[N −S
] ⊆ N −S

.

(v) Suppose n1 = (SS)∗Bn′1 for some n′1 ∈ H0. Then,

n1 n2 = (SS)∗[Bn′1]n2
∗−→ (Sn2)

∗[Bn′1n2]
∗−→ N −S

.

For this, we need to verify Bn′1n2
∗−→ N −S

first:

Bn′1n2
2−→ S(n′1n2)(n2(n

′
1n2))

∗−→ SL−S

0 N
−S

+SH−S

0 L
−S

0 +SL−S

1 H
−S

0 +SL−S

2 L
−S

1 ⊆ N −S
.

Therefore, either n′1n2 ∈ L
−S

0 (and n2(n
′
1n2)

∗−→ N −S
) or n2(n

′
1n2)

∗−→ H−S

0 .

• Suppose n′1n2 ∈ L
−S

0 . Then, either n′1 ∈ L
−S

0 and n2 = S, or n′1 = SS and n2 ∈ L
−S

0 .
For these alternatives we compute:

BL−S

0 S
2−→ S(L−S

0 S)(S(L−S

0 S)) −→ SL−S

0 (SL−S

0 )
∗−→ (SL−S

0 )∗[SN ] ⊆ N −S
and

B(SS)L−S

0
2−→ S(SSL−S

0 )(L−S

0 (SSL−S

0 )) ⊆ SL−S

0 (L−S

0 L
−S

0 )
∗−→ (SL−S

0 )∗[N −S
] ⊆ N −S

.

(Note: L−S

0 L
−S

0
∗−→ (SL−S

0 )∗[N −S
] was verified in (i) and (ii) above.) This way, we may

verify our choice we have with:

n1 n2 ∈ (SS)∗[BL−S

0 ]S
∗−→ (SS)∗[BL−S

0 S]
∗−→ (SL−S

0 )∗[N −S
] ⊆ N −S

and

n1 n2 ∈ (SS)∗[B(SS)]L−S

0
∗−→ (SL−S

0 )∗[B(SS)L−S

0 ]
∗−→ (SL−S

0 )∗[N −S
] ⊆ N −S

.

• Suppose n2(n
′
1n2)

∗−→ H−S

0 and n′1n2 /∈ L
−S

0 . Then, n′1 = S and n2 = SS. In this case,
we may verify:

n1 n2 ∈ (SS)∗[BS] (SS)
∗−→ (S(SS))∗[SB(SSB)] ∈ (SL−S

0 )∗[SH−S

0 L
−S

1 ] ⊆ N −S
.
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In summary, n1n2
∗−→ N −S

for n1 ∈ H0 − S − SN , only if:

n1 n2 ∈ (SS)∗[S] L−S

0 ,

n1 n2 = (SSS) B ,

n1 n2 ∈ (SS)∗[SH−S

0 ] L−S

0 ,

n1 n2 ∈ (SS)∗[SL−S

4 ] S ,

n1 n2 ∈ SS(SS) L−S

1 ,

n1 n2 ∈ (SS)∗[SBS] S ,

n1 n2 ∈ (SS)∗[SB(SS)] (SS) ,

n1 n2 ∈ (SS)∗[BL−S

0 ] S ,

n1 n2 ∈ (SS)∗[B(SS)] L−S

0 , or

n1 n2 ∈ (SS)∗[BS] (SS) .

#2. Suppose n1 ∈ H1 ∩ N
−SS

and n2 = SS. Then, n1 ∈ (SS + B)∗[n′1] for some n′1 ∈
S(SB + SSH−SS

0 )(S + SS). We will first show n1n2
∗−→ (SN )∗[n′1n2]. Then, we will show that

n′1n2
∗−→ N −S

is not possible, i.e., n′1n2S ↑ . From these results and Proposition R we can

verify n1n2
∗−→ N −S

is impossible.
With Proposition R, we compute:

n1 n2 = (SS +B)∗[n′1] (SS)
∗−→ (B + SS(SS))∗[n′1(SS)] .

Clearly n′1(SS) ∈ (SN )∗[n′1n2]. Suppose n ∈ (SN )∗[n′1n2]. Then,

B n = B
(
(SN )∗[n′1n2]

)
⊆ (SN )∗[n′1n2] and

SS(SS)n −→ Sn(SSn) ⊆ (SN )∗[n] ⊆ (SN )∗[n′1n2] .

Therefore, n1n2
∗−→ (SN )∗[n′1n2].

We show in no case n′1n2
∗−→ N −S

with the following:

n′1 n2 ∈ S(SB + SSH−SS

0 )(S + SS) (SS)
∗−→

S
(
(SS)∗[SSS + SS(SS) + SSB + SB]

)(
S + SS

)(
SS
) ∗−→(

(SS)∗[SSS + SS(SS) + SSB + SB](SS)
)(

(S + SS)(SS)
) ∗−→(

(B)∗[BB +B(SS(SS)) +B(B(SS)) + SB(SS)]
)(
B + SS(SS)

)
.

The left component in the final expression (not yet in normal form!) is a subset of H0. However,
every application of a term in this left component with a term in the right component, B or
SS(SS), fails to match any n3n4 ∈ H0N such that n3n4

∗−→ N −S
discussed before.

#3. Suppose n1 ∈ H1 ∩ N
−S

and n2 = S. Then, n1 = Sn3n4 for some n3, n4 ∈ N . Naturally,
n1n2 = Sn3n4S −→ (n3S)(n4S) and n3S

∗−→ H0 +H1. We reject n3S
∗−→ H1 because if so,

we would have to accept n1n2
∗−→ H1(SS), but this resulting set was proven disjoint from 〈N −S〉

just above. Then, n3S
∗−→ H0. Let n′3, n

′
4 ∈ N be such that n3S

∗−→ n′3 and n4S
∗−→ n′4. Then,

n′3n
′
4 ∈ H0N . Therefore, either n′3n

′
4 matches one of the choices found in #1, when supposing

“n1 ∈ H0,” or else n′3 ∈ SN . For the first alternative, we extract n1 ∈ SL
−S

0 L
−S

0 + SK4S from

the result at the end of #1 (K4 = (L−S

2 )
−S

justifies the SK4S part). This is because n′3 cannot

be B(SS), SB(SS), nor in L0−L
−S

0 , e.g., not in (SS)∗[SL−S

4 ], and n′4 cannot be S, B, nor in

L−S

1 . The second alternative forces n′3 = SS, so n3 = S and n1n2 = SSn4S → SS(n4S), which

still requires n4S
∗−→ N −S

. Therefore, the second alternative only introduces the possibility of
having any number of prefixes SS. However, the base expression must be an S-term given from
the first alternative. Therefore, n1n2

∗−→ N −S
for n1 ∈ N

−S
and n2 = S, only if:

n1 ∈ (SS)∗[SL−S

0 L
−S

0 ] or n1 ∈ (SS)∗[SK4S] .
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Let

J1
def
= A = SSS ,

J2
def
= (SS)∗[SH−S

0 ] ,

J3
def
= (SS)∗[SL−S

4 ] ,

J4
def
= SS(SS) ,

J5
def
= (SS)∗[SB(SS)] ,

J6
def
= (SS)∗[B(SS)] ,

J7
def
= (SS)∗[BL−S

0 ] ,

J8
def
= (SS)∗[SL−S

0 ] ,

J9
def
= (SS)∗[SL−S

0 S] , and

J10
def
= (SS)∗[SL−S

0 L
−S

0 + SK4S] .

We complete the grammar as follows:

(xxi) 〈N −S〉 ::= S | S 〈N〉 | S 〈H−S

0 〉 〈L
−S

0 〉 | S 〈L
−S

1 〉 〈H
−S

0 〉 | S 〈L
−S

2 〉 〈L
−S

1 〉 | S 〈L
−S

4 〉S |

〈K0〉 〈L
−S

0 〉 | 〈J1〉B | 〈J2〉 〈L
−S

0 〉 | 〈J3〉S | 〈J4〉 〈L
−S

1 〉 | 〈L1〉S |

〈J5〉 (S S ) | 〈J6〉 〈L
−S

0 〉 | 〈J7〉S | 〈J9〉S | 〈J10〉S | 〈L
−S

2 〉 (S S ) |

S 〈L−S

0 〉 〈N
−S〉

(xxii) 〈J1〉 ::= A

(xxiii) 〈J2〉 ::= 〈K0〉S | S 〈H
−S

0 〉 | S S 〈J2〉

(xxiv) 〈J3〉 ::= 〈K0〉S | S 〈L
−S

4 〉 | S S 〈J3〉

(xxv) 〈J4〉 ::= S S (S S ) | 〈J1〉S

(xxvi) 〈J5〉 ::= S B (S S ) | S S 〈J5〉

(xxvii) 〈J6〉 ::= B (S S ) | S S 〈J6〉

(xxviii) 〈J7〉 ::= 〈K4〉S | B 〈L
−S

0 〉 | S S 〈J7〉

(xxix) 〈J8〉 ::= S 〈L−S

0 〉 | S S 〈J8〉

(xxx) 〈J9〉 ::= 〈J8〉S | S S 〈J9〉

(xxxi) 〈J10〉 ::= S S 〈J10〉 | S 〈L
−S

0 〉 〈L
−S

0 〉 | SS (SS) 〈L−S

0 〉 | AS 〈L
−S

0 〉 | B (SS) (SS) | 〈J11〉S

(xxxii) 〈J11〉 ::= S S 〈J11〉 | S 〈K4〉 | S A 〈L
−S

0 〉 | S S (SS)A | AS A | 〈J12〉S

(xxxiii) 〈J12〉 ::= S S 〈J12〉 | S S (SA) | S A (SS)

(xxxiv) A ::= S S S

As we can see, for every right rule part of the form X S , where X is a non-terminal, the rule
X ::= SS X must be included in the set of rules for X.

The list of predecessors for J10 was obtained with an analysis like the one shown in the fol-
lowing diagram (the (SS)∗[SK4S] case is not shown in the diagram; such terms are immediately
put in 〈J11〉). Terms shown overbraced and underbraced in the diagram are at the boundaries

between 〈J10〉 and 〈J11〉 (S A 〈L−S

0 〉S and S A 〈L−S

0 〉 respectively) or between 〈J11〉 and 〈J12〉
(S A (SS)S and S A (SS) respectively, S S (SA)S and S S (SA) respectively).
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S 〈L
−S

0
〉 〈L

−S

0
〉

SS (SS) 〈L
−S

0
〉

AS 〈L
−S

0
〉 B (SS) (SS)

︷ ︸︸ ︷

S A 〈L
−S

0
〉

︸ ︷︷ ︸

S

SS (SS)A SS (SASS)

AS A

︷ ︸︸ ︷

S S (S AS)
︸ ︷︷ ︸

S

︷ ︸︸ ︷

S A (SS)
︸ ︷︷ ︸

S

︷ ︸︸ ︷

S S (SA)
︸ ︷︷ ︸

S

x = S, y = SS, z ∈ 〈L
−S

0 〉

x = S, y = S, z = S x = SS, y = SS, z = SS

x = A, y ∈ 〈L
−S

0 〉, z = S

x = S, y = SS, z = A

x = S, y = S, z = S

x = A, y = SS, z = S x = S, y = SA, z = S

x = S, y = SAS, z = S

SAS ∈ SA〈L
−S

0 〉
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