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Abstract. Abstract Voronoi diagrams [17, 18] are based on bisecting
curves enjoying simple combinatorial properties, rather than on the ge-
ometric notions of sites and circles. They serve as a unifying concept.
Once the bisector system of any concrete type of Voronoi diagram is
shown to fulfill the AVD properties, structural results and efficient al-
gorithms become available without further effort. For example, the first
optimal algorithms for constructing nearest Voronoi diagrams of disjoint
convex objects, or of line segments under the Hausdorff metric, have been
obtained this way [22].
In a concrete order-k Voronoi diagram, all points are placed into the same
region that have the same k nearest neighbors among the given sites. This
paper is the first to study abstract Voronoi diagrams of arbitrary order k.
We prove that their complexity is upper bounded by 2k(n−k). So far, an
O(k(n− k)) bound has been shown only for point sites in the Euclidean
and Lp plane [20, 21], and, very recently, for line segments [25]. These
proofs made extensive use of the geometry of the sites.
Our result on AVDs implies a 2k(n − k) upper bound for a wide range
of cases for which only trivial upper complexity bounds were previously
known, and a slightly sharper bound for the known cases.
Also, our proof shows that the reasons for this bound are combinatorial
properties of certain permutation sequences.
Keywords: Abstract Voronoi diagrams, computational geometry, dis-
tance problems, higher order Voronoi diagrams, Voronoi diagrams.

1 Introduction

Voronoi diagrams are useful structures, known in many areas of science. The
underlying idea goes back to Descartes [13]. There are sites p, q that exert in-
fluence on their surrounding space, M . Each point of M is assigned to that site
p (resp. to those sites p1, . . . , pk) for which the influence is strongest. Points
assigned to the same site(s) form Voronoi regions.

The nature of the sites, the measure of influence, and space M can vary. The
order, k, can range from 1 to n− 1 if n sites are given. For k = 1 the standard
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nearest Voronoi diagram results, while for k = n−1 the farthest Voronoi diagram
is obtained, where all points of M having the same farthest site are placed in
the same Voronoi region. In this paper we are interested in values of k between
1 and n − 1; here an order-k Voronoi region contains all points that have the
same k nearest sites. See the surveys and monographs [6, 8, 9, 11,14,24].

A lot of attention has been given to nearest Voronoi diagrams in the plane.
Many concrete cases have the following features in common. The locus of all
points at identical distance to two sites p, q is an unbounded curve J(p, q). It
bisects the plane into two domains, D(p, q) and D(q, p); domain D(p, q) consists
of all points closer to p than to q. Intersecting all D(p, q), where q 6= p for a
fixed p, results in the Voronoi region VR(p, S) of p with respect to site set S.
It equals the set of all points with unique nearest neighbor p in S. If geodesics
exist, Voronoi regions are pathwise connected, and the union of their closures
covers the plane, since each point has at least one nearest neighbor in S.

In abstract Voronoi diagrams (AVDs, for short) no sites or distance measures
are given. Instead, one takes unbounded curves J(p, q) = J(q, p) as primary
objects, together with the domains D(p, q) and D(q, p) they separate. Nearest
abstract Voronoi regions are defined by

VR(p, S) :=
⋂

q∈S\{p}
D(p, q),

and now one requires that the following properties hold true for each subset S′

of S.

(A1) Each nearest Voronoi region VR(p, S′) is pathwise connected.
(A2) Each point of the plane belongs to the closure of a nearest Voronoi region

VR(p, S′).

Two more, rather technical, assumptions on the curves J(p, q) are stated in
Definition 1 below. It has been shown that the resulting nearest AVDs—the
plane minus all Voronoi regions— are planar graphs of complexity O(n). They
can be constructed, by randomized incremental construction, in O(n log n) many
steps [18,19,22]. Moreover, properties (A1) and (A2) need only be checked for all
subsets S′ of size three [18]. This makes it easier to verify that a concrete Voronoi
diagram is under the roof of the AVD concept. Examples of such applications
can be found in [1–3, 10, 16, 22]. Farthest abstract Voronoi diagrams consist of
regions VR∗(p, S) :=

⋂
q∈S\{p}D(q, p). They have been shown to be trees of

complexity O(n), computable in expected O(n log n) many steps [23].

In this paper we consider, for the first time, general order-k abstract Voronoi
regions, defined by

VRk(P, S) :=
⋂

p∈P, q∈S\P
D(p, q),

for each subset P of S of size k. The order-k abstract Voronoi diagram V k(S) is
defined to be the complement of all order-k Voronoi regions in the plane; it equals



the collection of all edges that separate order-k Voronoi regions (Lemma 4). In
addition to properties (A1) and (A2) we shall assume the following.

(A3) No nearest Voronoi region VR(p, S′) is empty.

In Lemma 1 we prove that property (A3) needs only be tested for all sub-
sets S′ of size four. Clearly, (A3) holds in all concrete cases where each nearest
region contains its site.

Figure 1 shows two concrete order-2 diagrams of points and line segments
under the Euclidean metric. We observe that the order-2 Voronoi region of line
segments s1, s2 is disconnected. In general, a Voronoi region in V 2(S) can have
n− 1 connected components. Figure 2 depicts a curve system fulfilling all prop-
erties required, and the resulting abstract Voronoi diagrams of order 1 to 4. An
index p placed next to a curve indicates on which side the domain D(p, q) lies,
if q denotes the opposite index. The order-2 region of p1 and p2 consists of four
connected components.
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Figure 6.8: Region of {p, q} in the order-2 Voronoi diagram V2(S)

words, the singleton site {p} = S \ M has to be furthest from x. For this
reason, the diagram Vn−1(S) is commonly called the furthest-site Voronoi
diagram of S. It contains, for each site p ∈ S, the region of all points x for
which p is the furthest site in S.

This diagram has special structural properties. For example, only sites
lying on the boundary of the convex hull of S, and exactly those, have non-
empty regions in Vn−1(S). This is because a site interior to the convex hull
can never be the furthest from any point x in Rd. Moreover, all regions are
unbounded, as each of them contains some unbounded ray emanating from
the defining site and pointing ‘away’ from S. In the plane, this implies that
the edge graph of Vn−1(S) is a tree. It consists of exactly 2h − 3 edges and
h − 2 vertices, when h denotes the number of extreme points in S (if S is
in general position; the size of Vn−1(S) is less, otherwise); cf. Figure 6.9.
Exact upper bounds on the size of furthest-site Voronoi diagrams in Rd for
d ≥ 3 are derived in Seidel [597].

Several methods of construction apply to Vn−1(S). Let us first consider
the lifting approach taken in Subsection 6.2.2, where distances to the sites
pi ∈ S are described by hyperplanes π(pi) in Rd+1. Clearly, the weights
w(pi) have all to be put to 0 now, as we deal with Euclidean distances
rather than with power functions.

As furthest distances are to be used, the lower envelope of the hyper-
planes π(p1), . . . , π(pn) will vertically project to Vn−1(S). Consequently, by

An order-k Voronoi region Vk(H, S) can be interpreted as the locus of points
closer to H than to any other subset of S of size k, where the distance be-
tween point x and subset H is measured as the farthest distance d(x, H) =
maxs∈H d(x, s).

The following lemma is a simple generalization of [3] for 1 ≤ k ≤ n − 1.

Lemma 1. Consider a face F of region Vk(H, S). F is unbounded (in the di-
rection r) iff there exists an open halfplane (normal to r) which intersects all
segments in H but no segment in S \ H.

Corollary 1. There is an unbounded Voronoi edge separating regions Vk(H ∪
{s1}, S) and Vk(H∪{s2}, S) iff a line through the endpoints of s1 and s2 induces
an open halfplane r(s1, s2) such that r(s1, s2) intersects all segments in H but
no segment in S \ H.

3 Disconnected regions

The order-k line segment Voronoi diagram may have disconnected regions, unlike
its counterpart of points, see e.g., Fig. 1. This phenomenon was first pointed out
in [3] for the farthest line segment Voronoi diagram, where a single region was
shown possible to be disconnected in Θ(n) faces.

s1
s2

F1 ⊂ V2({s1, s2}, S)

F2 ⊂ V2({s1, s2}, S)

Fig. 1. V2(S) with two disconnected faces, induced by the same pair of sites.

Lemma 2. An order-k region of Vk(S) can have Ω(n) disconnected faces, in
the worst case, for k > 1.

Proof. We describe an example where an order-k Voronoi region is disconnected
in Ω(n − k) bounded faces. Consider k almost parallel long segments H. These
segments induce a region Vk(H, S). Consider a minimum disk, that intersects
all segments of H, and moves along their length. We place the remaining n − k
segments of S \H in such way, that they create obstacles for the disk. While the
disk moves along the tree of Vf (H) it intersects the segments of S \ H, and one
by one creates Ω(n − k) disconnectivities (see Fig. 2 (a)).

Fig. 1: Order-2 diagrams of points and line segments

In this paper we are proving the following result.

Theorem 1. The abstract order-k Voronoi diagram V k(S) has at most 2k(n−k)
many faces.

So far, an O(k(n−k)) bound was known only for points in L2 and in the Lp-
plane [20,21]. Quite recently, it has been shown for line segments in the Euclidean
plane [25], too. The proofs of these results depend on geometric arguments us-
ing k-sets3, k-nearest neighbor Delaunay triangulations, and point-line duality,
respectively. None of these arguments applies to abstract Voronoi diagrams.

3 We call a subset of size k of n points a k-set if it can be separated by a line passing
through two other points. Such k-sets correspond to unbounded order-(k+1) Voronoi
edges.
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Fig. 2: AVD of 5 sites in all orders.

However, the upper bound on k-sets established in [5] had a combinatorial
proof; it was obtained by analyzing the cyclic permutation sequences that result
when projecting n point sites onto a rotating line. In such a sequence, consecu-
tive permutations differ by a switch of adjacent elements, and permutations at
distance

(
n
2

)
are inverse to each other.

In this paper we traverse the unbounded edges of higher order AVDs, and
obtain a strictly larger class of cyclic permutation sequences, where consecutive
permutations differ by switches and any two elements switch exactly twice. Our
proof is based on a tight upper bound to the number of switches that can occur
among the first k+ 1 elements; see Lemma 9. It is interesting to observe that in
our class, each permutation sequence can be realised by an AVD (Lemma 10),
while a similar statement does not hold for the sequences obtained by point
projection [15].

To avoid technical complications we are assuming, in this paper, that any
two input curves J(p, q) intersect in a finite number of points, and that Voronoi
vertices are of degree 3. How to get rid of the first assumption has been shown



for the case of nearest AVDs in [18]. The perturbation technique of [17] can be
used to obtain degree 3 vertices.

Theorem 1 implies a 2k(n − k) upper complexity bound on a wide range
order-k Voronoi diagrams for which no good bounds were previously known.
For example, sites may be disjoint convex objects of constant complexity in L2

or under the Hausdorff metric. For point sites, distance can be measured by
any metric d satisfying the following conditions: points in general position have
unbounded bisector curves; d-circles are of constant algebraic complexity; each
d-circle contains an L2-circle and vice versa; for any two points a 6= c there is
a third point b 6= a, c such that d(a, c) = d(a, b) + d(b, c) holds. This includes
all convex distance functions, but also the Karlsruhe metric where motions are
constrained to radial or circular segments with respect to a fixed center point. A
third example are point sites with additive weights ap, aq that satisfy |ap−aq| <
|p− q|, for any two sites p 6= q; see [8] for a discussion of these examples.

The rest of this paper is organized as follows. In Section 2 we present some
basic facts about AVDs. Then, in Section 3, permutation sequences will be stud-
ied, in order to establish an upper bound to the number of unbounded Voronoi
edges of order at most k. This will lead, in Section 4, to a tight upper bound for
the number of faces of order k.

2 Preliminaries

In this section we present some basic facts on abstract Voronoi diagrams of
various orders.

Definition 1. A curve system J := {J(p, q) : p 6= q ∈ S} is called admissi-
ble if it fulfills, besides axioms (A1), (A2), (A3) stated in the introduction, the
following axioms.

(A4) Each curve J(p, q), where p 6= q, is unbounded. After stereographic projection
to the sphere, it can be completed to a closed Jordan curve through the north
pole.

(A5) Any two curves J(p, q) and J(r, t) have only finitely many intersection points,
and these intersections are transversal.

Fortunately, verification of these axioms can be based on constant size ex-
amples.

Lemma 1. To verify axioms (A1) and (A2) it is sufficient to check all subsets
S′ of size 3, and for (A3), of size 4.

Proofs for (A1) and (A2) can be found in [18], Section 4.3. For (A3), the proof
is given in the Appendix.

The following fact will be very useful in the sequel. Its proof can be found
in [18], Lemma 5.

Lemma 2. For all p, q, r in S, D(p, q) ∩D(q, r) ⊆ D(p, r) holds.



Consequently, for each x /∈ ⋃p,q∈S J(p, q) a global ordering of the site set S
is given by

p <x q :⇐⇒ x ∈ D(p, q).

Informally, one can interpret p <x q as “x is closer to p than to q“. We will write
p < q if it is clear which x ∈ R2 we are referring to.

As a direct consequence we show that property (A2) also holds for abstract
order-k Voronoi regions.

Lemma 3. Let J = {J(p, q) : p 6= q ∈ S} be an admissible curve system. Then
for all k ∈ {1, . . . n− 1}

R2 =
⋃

P⊆S,|P |=k

VRk(P, S).

Proof. Let x ∈ R2. If x is not contained in any bisecting curve J(p, q) then
it belongs to the order-k region VRk(P, S), where P = {p1, . . . , pk} are the k
smallest elements of S with respect to the ordering <x. Otherwise, x lies on
the boundary of a domain D ⊂ R2 \⋃p 6=q∈S J(p, q), and D fully belongs to an
order-k region.

The proofs of the following Lemmata 4 and 5 are similar to the proof of
Lemma 3.

Lemma 4.
V k(S) =

⋃
P 6=P ′⊂S
|P |=|P ′|=k

VRk(P, S) ∩VRk(P ′, S)

Lemma 5. If the intersection E := VRk(P, S)∩VRk(P ′, S) is not empty, there
are sites p ∈ P and p′ ∈ P ′ such that P \ {p} = P ′ \ {p′}, and E ⊆ J(p, p′)
holds. For each point x ∈ VRk(P, S) near E, index p is the k-th with respect to
<x, while for points x′ in VRk(P ′, S) index p′ appears at position k.

In particular, D(p, p′) lies on the same side of J(p, p′) as VRk(P, S) does.
If F, F ′ are connected components (faces) of VRk(P, S) and VRk(P ′, S),

respectively, the intersection F ∩F ′ can be empty, or otherwise be of dimension 0
(Voronoi vertices) or 1 (Voronoi edges).

For the next lemma we assume that all vertices are of degree 3. As in concrete
order-k Voronoi diagrams [20] there are two types of vertices that can be distin-
guished by the nature of sets P1, P2, P3 ⊂ S which define the adjacent order-k
Voronoi regions. In the first case there exist a set H ⊂ S of size k− 1 and three
more indices p, q, r ∈ S satisfying

P1 = H ∪ {p}, P2 = H ∪ {q}, P3 = H ∪ {r};
a vertex where such regions VRk(Pi, S) meet is called new in V k(S), or of nearest
type. In the second case, there are a subset K ⊂ S of size k − 2 and three more
sites p, q, r ∈ S such that

P1 = K ∪ {p, q}, P2 = K ∪ {p, r}, P3 = K ∪ {q, r}.



A vertex adjacent to such regions is called old in V k(S), or of furthest type. The
proof of the following lemma follows quite directly from these definitions.

Lemma 6. Let v be a new vertex in V k(S). Then v is an old vertex of V k+1(S),
and v lies in the interior of a face of V k+2(S), i. e., v is no vertex of V k+2(S).
Furthermore, every edge of V k(S) is included in a face of V k+1(S).

Already in [23] it has been shown that farthest abstract Voronoi diagrams are
trees, under a slightly different definition of admissible curves. In the Appendix
we give a short alternative proof of this fact based on our axioms (A1)–(A5).

Lemma 7. The farthest abstract Voronoi diagram V ∗(S) is a tree.

3 Bounding the number of unbounded edges of V ≤k(S)

Let Γ be a circle in R2 large enough such that no pair of bisectors cross on or
outside of Γ (axiom (A5)).
If we walk around Γ the ordering <x on S changes whenever we cross a bisector
J(p, q). Here indices p and q switch their places in the ordering, and because of
axiom (A5) there can be only one switch at a time. This means that each pair
of sites switch exactly two times while walking one round around Γ , resulting in
n(n− 1) switches altogether.

Lemma 8. Suppose that two sites p and q switch in the ordering. Then they are
adjacent to each other just before and after the switch.

Proof. Let p1 < . . . < pn, and assume that we cross J(pi, pj), i < j, which
means that pi and pj switch their places in the ordering. Suppose j > i + 1;
then x ∈ D(pi+1, pj) before the switch and x ∈ D(pj , pi+1) after the switch, but
J(pi+1, pj) has not been crossed—a contradiction.

Every time a switch among the first k + 1 elements of the ordering occurs,
there is an unbounded edge of a Voronoi diagram of order ≤ k. This means that
the maximum number of unbounded edges of all diagrams of order ≤ k is equal to
the maximum number of switches among the first k+1 elements in the ordering.

Permutation sequences and estimates for the maximum number of switches
among the first k elements have been used in [5] to bound the number of k-
sets of n points in the plane. These sequences resulted from projecting n points
in general position onto a rotating line. Hence, they were of length 2N , where
N =

(
n
2

)
, and they had the following properties. Adjacent permutations differ

by a transposition of adjacent elements, and any two permutations a distance
N apart are inverse to each other. It has been shown in [15] that not every
permutation of this type can be realized by a point set.

In the following lemma we introduce a larger class of permutation sequences
that fits the AVD framework.

Lemma 9. Let P (S) be a cyclic sequence of permutations P0, . . . , PN = P0 such
that



(i) Pi+1 differs from Pi by an adjacent switch;
(ii) each pair of sites p, q ∈ S switches exactly two times in P (S).

Then the number of switches occuring in P (S) among the first k + 1 sites is
upper bounded by k(2n− k − 1). Furthermore, this bound is tight.

Proof. Call a switch good if it involves at least one of the k first sites of a per-
mutation; otherwise call it bad. Consider the permutation P0 = (p1, p2, . . ., pn).
For i ∈ {k+ 2, . . . , n}, define Bi as the set of bad switches where pi is switching
with a site in {p1, . . . , pi−1}. We remark that the sets Bi, for i ∈ {k+ 2, . . . , n},
are pairwise disjoint. If pi is not involved in a good switch, then all its 2i − 2
switches with sites in {p1, . . . , pi−1} are bad. Otherwise, for pi to be involved in
a good switch, it must first be involved in at least i − k − 1 bad switches with
sites in {p1, . . . , pi−1}, in order to reach the first k+1 positions of a permutation,
and since P0 = PN , it has to be involved in as many bad switches in order to
return to its original place in PN . In both cases, |Bi| ≥ 2(i− k − 1). Because of
(ii), the total number of switches is N = 2

(
n
2

)
. Therefore the number of good

switches is at most

2

(
n

2

)
−

n∑
i=k+2

|Bi| ≤ 2

(
n

2

)
− 2

n−k−1∑
j=1

j = k(2n− k − 1),

where j = i− k − 1.
To show that the bound is tight, let P0 = (p1, . . . , pn). We will switch each

pi with all pj having a place before pi in P0 in consecutive order until pi is
the first element and then in inverse order back. Start with i = 2 and continue
until i = n. Then the number of switches among the first k + 1 sites is exactly
2
(
n
2

)
− 2

∑n−k−1
j=1 j.

In contradistinction to the result in [15], each such permutation sequence can
be realized by an AVD. The following Lemma 10 will be used for proving that
the upper bound shown in Lemma 11 is tight. The proof of Lemma 10 is given
in the Appendix.

Lemma 10. Let P (S) be a sequence of permutations as in Lemma 9. Then
there exists an abstract Voronoi diagram where the ordering of the sites along Γ
changes according to P (S).

Let Si be the number of unbounded edges in V i(S). If an edge e has got two
unbounded endpieces, i. e. the edge e bounding a p- and q-region is the whole
bisector J(p, q), then e is counted twice as an unbounded edge.

Lemma 11. Let k ∈ {1, . . . , n− 1}. Then,

k(k + 1) ≤
k∑

i=1

Si ≤ k(2n− k − 1).

Both bounds can be attained.



Proof. The second bound follows directly from Lemma 9. The first bound follows
from the fact that the minimum number of switches among the first (k+1) sites is
greater or equal to the total number of switches, n(n− 1), minus the maximum
number of switches among the last (n − k) sites, which again is equal to the
maximum number of switches among the first (n− k) sites. Using Lemma 9 this
implies

k∑
i=1

Si ≥ n(n− 1)− (n− k − 1)(2n− (n− k − 1)− 1) = k(k + 1).

The tightness of the bounds follows from Lemma 10.

4 Bounding the number of faces of V k(S)

In the following we assume that each Voronoi vertex is of degree 3. The following
two lemmata give combinatorial proofs for facts that were previously shown by
geometric arguments [20,25].

Lemma 12. Let F be a face of VRk+1(H,S). The portion of V k(S) enclosed in
F is exactly the farthest Voronoi diagram V ∗(H) intersected with F .

Proof. ”⇒”: Let x ∈ F and x ∈ VRk(H ′, S). Since F ⊆ VRk+1(H,S) it follows
that x ∈ D(p, q) for all p ∈ H and q ∈ S\H, implying H ′ ⊂ H. Let H\H ′ = {r},
then x ∈ D(p, r) for all p ∈ H ′ and hence x ∈ VR∗(r,H).
”⇐”: Let x ∈ F and x ∈ VR∗(r,H). Then x ∈ D(p, q) for all p ∈ H and q ∈ S\H
and x ∈ D(p, r) for all p ∈ H \ {r}. This implies x ∈ VRk(H \ {r}, S).

Lemma 13. Let F be a face of VRk(H,S), H ⊆ S, |H| = k ≥ 2. Then V ∗(H)∩
F is a nonempty tree.

Proof. First we show that V∗(H) ∩ F is not empty by assuming the opposite.
Then there is a p ∈ H such that F ⊆ VR∗(p,H). Let F ′ ⊆ VRk(H ′, S) be
a face of V k(S) adjacent to F along an edge e. By Lemma 5, we have H =
U ∪ {q} and H ′ = U ∪ {q′}, where q, q′ are different and not contained in U .
Also, e ⊆ J(q, q′) holds. If p were in U , we would obtain F ′ ⊆ D(p, q) and
F ⊆ V ∗(p,H) ⊆ D(q, p), hence e ⊆ J(p, q)—a contradiction to axiom (A5).
Thus, p /∈ U , which means p = q. Now Lemma 5 implies that each edge on
the boundary of F has to be part of a curve J(p, qj) such that D(p, qj) lies
on the F -side. Let q1, . . . , qi be the sites for which there is such an edge e on
the boundary of F . Then VR1(p, {p, q1, . . . , qi}) = F , because nearest Voronoi
regions are connected thanks to axiom (A1). But from F ⊆ V ∗(p,H) it follows
that VR1(p,H) ⊆ R2 \F and hence VR1(p, S) ⊆ F ∩R2 \F = ∅, a contradiction
to axiom (A3).

Next we show that V ∗(H) ∩ F is a tree. Because of Lemma 7 it is clear
that it is a forest. So it remains to prove that it is connected. Otherwise, there
would be a domain D ⊂ F , bounded by two paths P1, P2 ⊂ F of V ∗(H) and



two disconnected parts e1 and e2 on the boundary of F . There is an index
p ∈ H such that D ⊆ VR∗(p,H). Since V ∗(H) is a tree, by Lemma 7, the upper
(or: the lower) two endpoints of P1 and P2 must be connected by a path P in
V ∗(H) that belongs to the boundary of VR∗(p,H); see Figure 3. Here path P
connects the endpoints of e1; both curves together encircle a domain D′, which
is part of VR∗(p,H). By definition of the farthest Voronoi diagram, there are
q1, . . . , qi, such that e1 ∪ P is part of J(p, q1), . . . , J(p, qi), and all D(p, qj) are
situated outside of D′; compare Lemma 5. But then VR∗(p, {p, q1, . . . , qi}) would
be bounded, a contradiction to Lemma 7.

F

P2
P1

e2

e1

D

D′

p
qi

p q1

q2
p

pqi−1

P
V ∗(H)

Fig. 3: The intersection of an order-k face F and the farthest Voronoi diagram
of its defining sites must be a tree.

Lemma 14. Let F be a face of VRk+1(H,S) and m the number of Voronoi
vertices of V k(S) enclosed in its interior. Then F encloses e = 2m+ 1 Voronoi
edges of V k(S).

Proof. Lemmata 12 and 13.

The next two lemmata are from [25]. The proofs are given in the Appendix,
for completeness.

Lemma 15. Let Fk, Ek, Vk and Sk denote, respectively, the number of faces,
edges, vertices, and unbounded edges in V k(S). Then,

Ek = 3(Fk − 1)− Sk (1)

Vk = 2(Fk − 1)− Sk. (2)

Lemma 16. The number of faces in an AVD of order k is

Fk = 2kn− k2 − n+ 1−
k−1∑
i=1

Si.



Theorem 2. The number of faces Fk in an AVD of order k is bounded by bounds

n− k + 1 ≤ Fk ≤ 2k(n− k) + k + 1− n ∈ O(k(n− k)).

Both bounds can be attained.

Proof. Lemma 11 implies tight bounds k(k − 1) ≤ ∑k−1
i=1 Si ≤ (k − 1)(2n − k).

Together with Lemma 16 this proves the theorem.

5 Concluding remarks

A natural question is if weaker axioms than (A1)–(A5) can still imply Theorem 2.
In the case of nearest abstract Voronoi diagrams, it could be shown, with some
technical effort, that (A5) is dispensable [18]. A big challenge will be to design an
efficient algorithm for constructing abstract Voronoi diagrams of order k. Even
for the special case of points in the Euclidean metric, no optimal algorithm is
known for computing a single higher order Voronoi diagram.
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6 Appendix

Proof. (of Lemma 1) For (A1) and (A2) see [18], Section 4.3. If all bisecting
curves are straight lines, (A3) needs only be verified for all subsets of size 3, by
Helly’s theorem on convex sets. For general curves, let us assume that |S′| >
4 and VR(p, S′) = ∅ hold. Let q1, q2, q3 ∈ S′ \ {p} be pairwise different. By
induction, there exist points xi ∈ VR(p, S′ \ {qi}). Since no xi lies in VR(p, S′)
we have xi ∈ D(qi, p). By (A1), there are paths Pij connecting xi and xj in
VR(p, S′ \ {qi, qj}) ⊆ D(p, qk), where {i, j, k} = {1, 2, 3}. Furthermore, Pij has
to be contained in D(qi, p) ∪ D(qj , p), or VR(p, S′) would not be empty. Since
J(qi, p) has to separate xi from xj and xk, it must intersect Pij and Pik but
not Pjk, because Pjk is contained in D(p, qi). Thus, J(p, q1) and J(p, q2) must
intersect transversally (by (A5)) in a point w contained in a domain D bounded
by the paths P12, P23 and P13; see Figure 4.

The same holds for the other bisector pairs. Let J(p, qi) be oriented such
that D(p, qi) lies to the right. Then J(p, q3) has to intersect the part of J(p, q2)
before w and the part of J(p, q1) after w, or the other way round, or J(p, q3)
cuts through w between the parts of J(p, q1) and J(p, q2) before w; see Figure 5.

In the first case a face of the farthest region VR∗(p, {p, q1, q2, q3}) would be
bounded, contradicting Lemma 7.

In the second case there would be a nonempty part of VR(p, {p, q1, q2, q3})
contained in D. Let x be a point of this subset. Because of VR(p, S′) = ∅ there
must be q ∈ S \ {p, q1, q2, q3} such that x ∈ D(q, p). But all paths Pij are
contained in D(p, q), implying that J(p, q) is closed—a contradiction to (A4).

In the third case, since VR(p, {p, q1, q2, q3}) must not be empty, by (A3),
J(p, q3) has to intersect J(p, q1) or J(p, q2) in another point, resulting in a dis-
connection of VR(p, {p, q1, q3}) or VR(p, {p, q2, q3}) that contradicts (A1).

D
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x3

D(q1, p)

D(q2, p)

D(q3, p)
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P13 P23

p q2 pq1

Fig. 4: In the proof of Lemma 1, curves J(p, q1) and J(p, q2) meet at point w.
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Proof. (of Lemma 7) Suppose some farthest region V ∗(p, S) has a face F that
is bounded, and let J(p, q1), . . . , J(p, qi) be bounding F in this order. Note that
the indices qj need not be pairwise different, but consecutive edges belong to
different bisecting curves. Let xj be the intersection point between J(p, qj) and
J(p, qj+1) on the boundary of F and let the bisectors J(p, qj) be such oriented
that D(p, qj) lies on their left side.
If i = 1, then the bisector J(p, q1) would have to be closed, a contradiction.
Now let i > 1. By induction, if qi is removed, the remaining bisectors J(p, q1),
. . . , J(p, qi−1) do not bound a bounded face of VR∗(p, {p, q1, . . . qi−1}). Hence
there is a part of J(p, qi) such that, w.l.o.g., the parts of J(p, q1) before x1,
and of J(p, qi−1) after xi−1, do not intersect such that VR∗(p, {p, q1, . . . qi−1})
gets bounded. By axiom (A3), the region VR(p, {p, q1, qi−1}) is not empty. Thus
the part of J(p, q1) after xi must cross the part of J(p, qi−1) before xi−2 at
some point z; see Figure 6. Since VR(p, {p, q1, qi−1, qi}) is not empty, the part
of J(p, qi) before xi−1 has to intersect J(p, q1), or the part of J(p, qi) after
x1 must intersect J(p, qi−1), as shown in Figure 6. But in the former case,
VR(p, {p, q1, qi}) would be disconnected, in the latter case, VR(p, {p, qi−1, qi}),
contradicting axiom (A1). Here we are using axiom (A5) to ensure that, e. g.,
J(p, qi) and J(p, qi−1) intersect transversally at w, so that there must be a non-
empty wedge of VR(p, {p, qi−1, qi}) at w.

It remains to show that V ∗(S) is connected. Suppose there is a curve L
separating parts of V ∗(S). Then L ⊂ VR∗(p, S) for a p ∈ S, L ∩D(p, q) = ∅ for
all q ∈ S \ {p} and there are q 6= r ∈ S such that D(p, q) lies on one side of L
and D(p, r) on the other side. But then VR(p, {p, q, r}) would be empty.

Proof. (of Lemma 10) First we show that for |S| = 3 each P (S) fulfilling
the above properties can be realized by an AVD. Then we assume |S| ≥ 3 and
consider V (S) such that each triple p, q, r of sites change their ordering on Γ
according to P (S). This is possible because if the curve system of each triple
of sites is admissible then the curve system of S is admissible, too; see [18].
Now if there are two bisectors J(p, q) and J(r, t) having a different order on Γ
than p, q, r, t have in P (S), then p, q, r, t are pairwise different, and neither of
the bisectors J(p, r), J(p, t), J(q, r) or J(q, t) can occur between the two bisectors
J(p, q) and J(r, t) on Γ . Otherwise, suppose w. l. o. g. that J(p, r) occurs between
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Fig. 6: Farthest AVDs cannot contain bounded regions.

J(p, q) and J(r, t); then {p, q, r} would not have the same ordering on Γ as in
P (S), a contradiction to our assumption. Thus the ordering of J(p, q) and J(r, t)
on Γ can be changed without changing the structure of V (S).
Now let S = {p, q, r}. Then there are three different cases:

(1) Each site switches into the first position exactly once.
(2) One site switches into the first position exactly twice; it cannot do so more

often because then it would have to switch with one of the other sites more
often than twice. Further it implies that all other sites must switch them-
selves into first position exactly once.

(3) One site never moves to first position. This implies that both the other sites
switch to first position exactly once; otherwise, either one site would remain
in first position during the whole permutation, but then it would never switch
with any other site, or the two other sites would have to switch more than
twice.

Let P0 = (p, q, r). Then there are two possibilities for P1 in case (1): Either
P1 = (q, p, r), which leads to the sequence
P0 = (p, q, r)
P1 = (q, p, r)
P2 = (q, r, p), otherwise r never switches into first position or p switches into
first position twice
P3 = (r, q, p), otherwise r never switches into first position
P4 = (r, p, q), otherwise q switches into first position a second time
P5 = (p, r, q), otherwise p and q switch more than twice
P6 = (p, q, r), otherwise P0 6= P6;
or P1 = (p, r, q), which leads to the same permutation sequence in inverse order.

Assume that p is the site that switches into first position twice in case (2). Then
we get the following permutation sequence:
P0 = (p, q, r)
P1 = (q, p, r), then
P2 = (p, q, r), otherwise P2 = (q, r, p) which leads to the permutation sequence
as in case (1)



P3 = (p, r, q), otherwise p and q switch more than twice
P4 = (r, p, q), otherwise r never switches into first position
P5 = (p, r, q), otherwise p and q switch more than twice
P6 = (p, q, r), otherwise P0 6= P6;
or in inverse order.

Assume that r is the site that never switches into first position in case (3). Then
we get the following permutation sequence:
P0 = (p, q, r)
P1 = (q, p, r), then
P2 = (q, r, p), otherwise p switches into first position twice
P3 = (q, p, r), otherwise r switches into first position
P4 = (p, q, r), otherwise p and r switch more than twice
P5 = (p, r, q), otherwise p and q switch more than twice
P6 = (p, q, r), otherwise P0 6= P6;
or in inverse order.

These permutation sequences can be realized by the AVDs depicted in Figure 7.
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Fig. 7: Illustrations of cases (1) to (3) in the proof of Lemma 10.

Proof. (of Lemma 15) Consider V k(S)∪ Γ , cut off all edges outside of Γ , and
let G be the resulting graph. Then G is a connected planar graph and for its
number of faces, f , of vertices, v, and edges, e, we have f = Fk + 1, v = Vk +Sk,
e = Ek +Sk. Because of the general position assumption each vertex is of degree
3 and hence 2e = 3v. Now the Euler formula v−e+f = c+1 implies the lemma.

Proof. (of Lemma 16) Let Vk, V ′k and V ′′k be the number of Voronoi vertices,
new Voronoi vertices and old Voronoi vertices in V k(S), respectively. Then be-
cause of Lemma 6 we have Vk = V ′k + V ′′k = V ′k + V ′k−1.
Claim 1 : Fk+2 = Ek+1 − 2V ′k.
Because of Lemma 6 every old vertex of V k+1(S) lies in the interior of a face of
V k+2(S). Consider a face Fi of V k+2(S). Let mi be the number of old vertices of
V k+1(S) enclosed in its interior. Then Fi encloses ei = 2mi+1 edges of V k+1(S);



see Lemma 14. If we sum up through all the faces in V k+2(S), we obtain

Fk+2∑
i=1

ei = 2

Fk+2∑
i=1

mi + Fk+2.

Note that
∑Fk+2

j=1 mj = V ′′k+1 = V ′k and
∑Fk+2

j=1 ej = Ek+1, hence Fk+2 = Ek+1 −
2V ′k.
Claim 2 : The number of faces in V 1(S) is F1 = n and the number of faces in
V 2(S) is F2 = 3(n− 1)− S1.
The first part follows from axioms (A1) and (A3). To prove the second part,
consider a face of V 2(S). There are no old vertices in V 1(S), therefore the face
encloses exactly one edge of V 1(S) and hence F2 = E1. Equation (1) implies
F2 = 3(n− 1)− S1.
Now we sum up Fk+2 and Fk+3 to obtain Fk+3 = Ek+2 +Ek+1−Fk+2−2V ′k+1−
2V ′k = Ek+2 +Ek+1−Fk+2−2Vk+1; see Claim 1. Substituting (1) and (2) into it
results in Fk+3 = 2Fk+2 − Fk+1 − 2− Sk+2 + Sk+1. Using the iterative formula,
the base cases F1 = n and F2 = 3(n − 1) − S1, we derive the lemma by strong
induction.


