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Abstract

We investigate the relationship between two kinds of vertex colorings of graphs: unique-maximum colorings and
conflict-free colorings. In a unique-maximum coloring, the colors are ordered, and in every path of the graph the
maximum color appears only once. In a conflict-free coloring, in every path of the graph there is a color that appears
only once. We also study computational complexity aspects of conflict-free colorings and prove a completeness result.
Finally, we improve lower bounds for those chromatic numbers of the grid graph.
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1. Introduction

In this paper we study two types of vertex colorings of graphs, both related to paths. The first one is the following:

Definition 1. A unique-maximum coloring with respect to paths of G = (V, E) with k colors is a function C : V →
{1, . . . , k} such that for each path p in G the maximum color occurs exactly once on the vertices of p. The minimum k
for which a graph G has a unique-maximum coloring with k colors is called the unique-maximum chromatic number
of G and is denoted by χum(G).

Unique maximum colorings are known alternatively in the literature as ordered colorings or vertex rankings.
The problem of computing unique-maximum colorings is a well-known and widely studied problem (see, for exam-
ple, [10]) with many applications including VLSI design [11] and parallel Cholesky decomposition of matrices [12].
The problem is also interesting for the Operations Research community, because it has applications in planning ef-
ficient assembly of products in manufacturing systems [9]. In general, it seems that the vertex ranking problem can
model situations where interrelated tasks have to be accomplished fast in parallel (assembly from parts, parallel query
optimization in databases, etc.) Another application of unique-maximum colorings is in estimating the worst-case
complexity of finding a local optimum in a neighborhood structure. A neighborhood structure is a connected graph G
in which every vertex v has a real value r(v) associated with it. Suppose that we want to find a vertex v which is a local
minimum, i.e., r(v) ≤ r(v′) for every neighbor v′ of v in G. The goal is to find a local minimum vertex by querying the
function r(·) at as few vertices of the neighborhood structure as possible. In some classes of neighborhood structures
with graphs of bounded maximum degree (like grids), the worst-case complexity of finding a local minimum is closely
related to the unique-maximum chromatic number of the corresponding graph (see [13]).

The other type of vertex coloring can be seen as a relaxation of the unique-maximum coloring.

Definition 2. A conflict-free coloring with respect to paths of G = (V, E) with k colors is a function C : V → {1, . . . , k}
such that for each path p in G there is a color that occurs exactly once on the vertices of p. The minimum k for which
a graph G has a conflict-free coloring with k colors is called the conflict-free chromatic number of G and is denoted
by χcf(G).
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Conflict-free coloring of graphs with respect to paths is a special case of conflict-free colorings of hypergraphs,
first studied in [7, 17]. A hypergraph H is a pair (V, E), where E is a non-empty subset of the powerset of V . A
k-conflict-free coloring of a hypergraph H = (V, E) is a function C : V → {1, . . . , k} such that for every e ∈ E there
exists a vertex v ∈ e, whose color C(v) does not occur in any other vertex of e (i.e., color C(v) occurs uniquely in e).
One of the applications of conflict-free coloring is that it represents a frequency assignment for cellular networks. A
cellular network consists of two kinds of nodes: base stations and mobile agents. Base stations have fixed positions
and provide the backbone of the network; they are represented by vertices in V . Mobile agents are the clients of the
network and they are served by base stations. This is done as follows: Every base station has a fixed frequency; this
is represented by the coloring C, i.e., colors represent frequencies. If an agent wants to establish a link with a base
station it has to tune itself to this base station’s frequency. Since agents are mobile, they can be in the range of many
different base stations. To avoid interference, the system must assign frequencies to base stations in the following way:
For any range, there must be a base station in the range with a frequency that is not used by some other base station in
the range. One can solve the problem by assigning n different frequencies to the n base stations. However, using many
frequencies is expensive, and therefore, a scheme that reuses frequencies, where possible, is preferable. Conflict-free
coloring problems have been the subject of many recent papers due to their practical and theoretical interest (see, for
example, [14, 8, 5, 6, 2]). Most approaches in the conflict-free coloring literature use unique-maximum colorings
(a notable exception is the ‘triples’ algorithm in [2]), because unique-maximum colorings are easier to argue about
in proofs, due to their additional structure. Another advantage of unique-maximum colorings is the simplicity of
computing the unique color in any range (it is always the maximum color), given a unique-maximum coloring, which
can be helpful if very simple mobile devices are used by the agents.

For general graphs, finding the exact unique-maximum chromatic number of a graph is NP-complete [16, 13]
and there is a polynomial time O(log2 n) approximation algorithm [4], where n is the number of vertices. Since the
problem is hard in general, it makes sense to study specific classes of graphs.

The m × m grid, Gm, is the Cartesian product of two paths, each of length m − 1, that is, the vertex set of Gm is
{0, . . . ,m − 1} × {0, . . . ,m − 1} and the edges are {{(x1, y1), (x2, y2)} | |x1 − x2| + |y1 − y2| ≤ 1}. It is known [10] that
for general planar graphs the unique-maximum chromatic number is O(

√
n). Grid graphs are planar and therefore the

O(
√

n) bound applies. One might expect that, since the grid has a relatively simple and regular structure, it should not
be hard to calculate its unique-maximum chromatic number. This is why it is rather striking that, even though it is
not hard to show upper and lower bounds that are only a small constant multiplicative factor apart, the exact value of
these chromatic numbers is not known, and has been the subject of [1].

Paper organization. In the rest of this section we provide the necessary definitions and some earlier results. In
section 2, we prove that it is coNP-complete to decide whether a given vertex coloring of a graph is conflict-free with
respect to paths. In section 3, we show that for every graph G, χum(G) ≤ 2χcf (G) − 1 and provide a sequence of graphs
for which the ratio of the unique-maximum chromatic number to the conflict-free chromatic number tends to 2. In
section 4, we introduce two games on graphs that help us relate the two chromatic numbers for the grid graph. In
section 5, we show a lower bound on the unique-maximum chromatic number of the square grid graph, improving
previous results. Conclusions and open problems are presented in section 6.

1.1. Preliminaries
Definition 3. A graph X is a minor of Y , denoted as X 4 Y , if X can be obtained from Y by a sequence of the following
three operations: vertex deletion, edge deletion, and edge contraction. Edge contraction is the process of merging
both endpoints of an edge into a new vertex, which is connected to all vertices adjacent to the two endpoints. Given a
unique-maximum coloring C of Y , we get the induced coloring of X as follows. Take a sequence of vertex deletions,
edge deletions, and edge contractions so that we obtain X from Y . For the vertex and edge deletion operations, just
keep the colors of the remaining vertices. For the edge contraction operation, say along edge xy, which gives rise to
the new vertex vxy, set C′(vxy) = max(C(x),C(y)), and keep the colors of all other vertices.

Proposition 4. [3] If X 4 Y, and C is a unique-maximum coloring of Y, then the induced coloring C′ is a unique-
maximum coloring of X. Consequently, χum(X) ≤ χum(Y).

The (traditional) chromatic number of a graph is denoted by χ(G) and is the smallest number of colors in a vertex
coloring for which adjacent vertices are assigned different colors. A simple relation between the chromatic numbers
we have defined so far is the following.
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Fact 5. For every graph G, χ(G) ≤ χcf(G) ≤ χum(G).

Moreover, we prove that both conflict-free and unique-maximum chromatic numbers are monotone under taking
subgraphs.

Proposition 6. If X ⊆ Y, then χcf(X) ≤ χcf(Y) and χum(X) ≤ χum(Y).

Proof. Take the restriction of any conflict-free or unique-maximum coloring of graph Y to the vertex set V(X). This
is a conflict-free or unique maximum coloring of graph X, respectively, because the set of paths of graph X is a subset
of all paths of Y .

If v is a vertex (resp. S is a set of vertices) of graph G = (V, E), denote by G − v (resp. G − S ) the graph obtained
from G by deleting vertex v (resp. vertices of S ) and incident edges.

Definition 7. A subset S ⊆ V is a separator of a connected graph G = (V, E) if G − S is disconnected or empty. A
separator S is minimal if no proper subset S ′ ⊂ S is a separator.

2. Deciding whether a coloring is conflict-free

In this section, we show a difference between the two chromatic numbers χum and χcf , from the computational
complexity aspect. For the notions of complexity classes, hardness, and completeness, we refer, for example, to [15].

As we mentioned before, in [16, 13], it is shown that computing χum for general graphs is NP-complete. To be
exact the following problem is NP-complete: “Given a graph G and an integer k, is it true that χum(G) ≤ k?”. This
implies that it is possible to check in polynomial time whether a given coloring of a graph is unique-maximum with
respect to paths. We remark that both the conflict-free and the unique-maximum properties have to be true in every
path of the graph. However, a graph with n vertices can have exponential in n number of distinct sets of vertices, each
one of which is a vertex set of a path in the graph. For unique-maximum colorings we can find a shortcut as follows:
Given a (connected) graph G and a vertex coloring of it, consider the set of vertices S of unique colors. Let u, v ∈ V \S
such that they both have the maximum color that appears in V \S . If there is a path in G−S from u to v, then this path
violates the unique maximum property. Therefore, S has to be a separator in G, which can be checked in polynomial
time, otherwise the coloring is not unique-maximum. If G − S is not empty, we can proceed analogously for each
of its components. For conflict-free colorings there is no such shortcut, unless coNP = P, as the following theorem
implies.

Theorem 8. It is coNP-complete to decide whether a given graph and a vertex coloring of it is conflict-free with
respect to paths.

Proof. In order to prove that the problem is coNP-complete, we prove that it is coNP-hard and also that it belongs to
coNP.

We show coNP-hardness by a reduction from the complement of the Hamiltonian path problem. For every graph
G, we construct in polynomial time a graph G∗ of polynomial size together with a coloring C of its vertices such that
G has no Hamiltonian path if and only if C is conflict-free with respect to paths of G∗.

Assume the vertices of graph G are v1, v2, . . . , vn. Then, graph G∗ consists of two isomorphic copies of G, denoted
by Ĝ and Ǧ, with vertex sets v1, v2, . . . , vn and v1, v2, . . . , vn, respectively. Additionally, for every i ∈ {1, . . . , n}, G∗

contains the path
Pi = vi, vi,1, vi,2, . . . , vi,i−1, vi,i+1, . . . , vi,n, vi,

where, for every i, vi,1, vi,2, . . . , vi,i−1, vi,i+1, . . . , vi,n are new vertices. We use the following notation for the two possible
directions to traverse this path:

P↓i = (vi,1, . . . , vi,i−1, vi,i+1, . . . , vi,n),

P↑i = (vi,n, . . . , vi,i+1, vi,i−1, . . . , vi,1).

We call paths Pi connecting paths.
We now describe the coloring of V(G∗). For every i, we set C(vi) = C(vi) = i. For every i > j, we set C(vi, j) =

C(v j,i) = n +
(

i−1
2

)
+ j. Notice that every color occurs exactly in two vertices of G∗.
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If G has a Hamiltonian path, say v1v2 . . . vn, then there is a path through all vertices of G∗, either

v1P↓1v1v2P↑2v2 . . . vn−1P↓n−1vn−1vnP↑nvn, if n is even,

or
v1P↓1v1v2P↑2v2 . . . vn−1P↑n−1vn−1vnP↓nvn, if n is odd.

But then, this path has no uniquely occurring color and thus C is not conflict-free.
Suppose now that C is not a conflict-free coloring. We prove that G has a Hamiltonian path.
By the assumption, there is a path P in G∗ which is not conflict-free. This path must contain none or both vertices

of each color. Therefore, P can not be completely contained in Ĝ, or in Ǧ, or in some Pi. Also, P can not contain only
one of vi and vi, for some i. Therefore, P must contain both vi and vi for a non-empty subset of indices i.

Then, it must contain completely some Pi, because vertices in Ĝ and Ǧ can only be connected with some complete
Pi. But since each one of the n − 1 colors of this Pi occurs in a different connecting paths, P must contain a vertex in
every connecting path. But then P must contain every vi and vi, because vertices in Pi can only be connected to the
rest of the graph through one of vi or vi.

Suppose that P is not a Hamiltonian path of G∗. Observe that if P does not contain all vertices of some connecting
path Pi, then one of its end vertices should be there. If P does not contain vertex vi, j, then it can not contain v j,i either.
But then one end vertex of P should be on Pi, the other one on P j, and all other vertices of G∗ are on P. Therefore,
we can extend P such that it contains vi, j and v j,i as well. So assume in the sequel that P is a Hamiltonian path of G∗.

Now we modify P, if necessary, so that both of its end-vertices e and f lie in V(Ĝ)∪ V(Ǧ). If e and f are adjacent
in G∗, then add the edge e f to P and we get a Hamiltonian cycle of G∗. Now remove one of its edges which is either
in Ĝ, or in Ǧ and get the desired Hamiltonian path. Suppose now that e and f are not adjacent, and e is on one of the
connecting paths. Then e should be adjacent to the end vertex e′ of that connecting path, which is in Ĝ or in Ǧ. Add
edge ee′ to P. We get a cycle and a path joined in e′. Remove the other edge of the cycle adjacent to e′. We have a
Hamiltonian path now, whose end vertex is e′ instead of e. Proceed analogously for f , if necessary.

Now we have a Hamiltonian path P of G∗ with end-vertices in V(Ĝ) ∪ V(Ǧ). Then, P is in the form, say,

v1P↓1v1v2P↑2v2 . . . vn−1P↓n−1vn−1vnP↑nvn, if n is even,

or
v1P↓1v1v2P↑2v2 . . . vn−1P↑n−1vn−1vnP↓nvn, if n is odd.

But then, v1v2 . . . vn is a Hamiltonian path in G.
Finally, the problem is in coNP because an algorithm can verify that a coloring of a given graph is not conflict-free

in polynomial time, if given a path with no vertex of unique color.

We show an example graph G, its transformation graph G∗, and its coloring C in figure 1.
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Figure 1: Example graphs G, G∗, and coloring C of G∗

4



3. The two chromatic numbers of general graphs

We have seen that χum(G) ≥ χcf(G) (fact 5). In this section we show that χum(G) is bounded by an exponential
function of χcf(G). We also provide an infinite sequence of graphs H0, H1, H2, . . . , for which

lim
k→∞

χum(Hk)
χcf(Hk)

= 2.

The path of n vertices is denoted by Pn. It is known (see for example [7]) that χcf(Pn) = blog2 nc + 1. Moreover,
we are going to use the following result (lemma 5.1 of [10]): If the longest path of G has k vertices, then χum(G) ≤ k.

Proposition 9. For every graph G, χum(G) ≤ 2χcf(G) − 1.

Proof. Set j = χcf(G). Since the conflict-free chromatic number is monotone with respect to subgraphs (proposi-
tion 6), for any path P ⊆ G, χcf(P) ≤ j. Therefore the longest path of G has at most 2 j − 1 vertices, so by lemma 5.1
of [10], χum(G) ≤ 2 j − 1.

We define recursively the following sequence of graphs: Graph H0 is a single vertex. Suppose that we have already
defined Hk−1. Then Hk consists of (a) a K2k+1−1, (b) 2k+1 − 1 copies of Hk−1, and (c) for each i ∈ {1, . . . , 2k+1 − 1}, the
i-th vertex of the K2k+1−1 is connected by an edge to one of the vertices of the i-th copy of Hk−1. See figure 2.

H0

H1

H2

· · · K2k+1−1K2k+1−1

Hk−1

Hk−1

Hk−1

Hk−1 Hk−1

Hk−1

Hk−1

Hk

· · ·

Figure 2: Sequence of graphs {Hk}
∞
k=0

Lemma 10. For k ≥ 0, χcf(Hk) = 2k+1 − 1.

Proof. By induction on k. For k = 0, χcf(H0) = 1. For k > 0, we have Hk ⊇ K2k+1−1, therefore, χcf(Hk) ≥ 2k+1 − 1.
In order to prove that χcf(Hk) ≤ 2k+1 − 1, it is enough to describe a conflict-free coloring of Hk with 2k+1 − 1

colors, given a conflict-free coloring of Hk−1 with 2k − 1 colors: We color the vertices of the clique K2k+1−1 with colors
1, 2, . . . , 2k+1 − 1 such that the i-th vertex is colored with color i. Consider these colors mod 2k+1 − 1, e. g. color 2k+1

is identical to color 1. Recall that the i-th copy of Hk−1 has a vertex connected to the i-th vertex of K2k+1−1, and by
induction we know that χcf(Hk−1) = 2k − 1. Color the i-th copy of Hk−1, with colors i + 1, i + 2, . . . , i + 2k − 1.

We claim that this vertex coloring of Hk is conflict-free. If a path is completely contained in a copy of Hk−1, then
it is conflict-free by induction. If a path is completely contained in the clique K2k+1−1, then it is also conflict-free,
because all colors in the clique part are different. If a path contains vertices from a single copy of Hk−1, say, the i-th
copy, and the clique, then the i-th vertex of the clique is on the path and uniquely colored. The last case is when a
path contains vertices from exactly two copies of Hk−1. Suppose that these are the i-th and j-th copies of Hk−1, with
1 ≤ i < j ≤ 2k+1 − 1. If i + 2k − 1 < j, then color j is unique in the path; indeed, the i-th copy of Hk−1 is colored with
colors i + 1, . . . i + 2k − 1, and the j-th copy of Hk−1 is colored with colors j + 1, . . . j + 2k − 1, while color j appears
only once in K2k+1−1. Similarly, if i + 2k − 1 ≥ j, then color i is unique in the path.
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Lemma 11. For k ≥ 0, χum(Hk) ≤ 2k+2 − k − 3.

Proof. By induction. For k = 0, χum(H0) = 1. For k > 0, in order to color Hk use the 2k+1 − 1 different highest colors
for the clique part. By the inductive hypothesis χum(Hk−1) ≤ 2k+1−k−2. For each copy of Hk−1, use the same coloring
with the 2k+1 − k − 2 lowest colors. This coloring of Hk is unique maximum. Indeed, if a path is contained in a copy
of Hk−1 then it is unique maximum by induction, and if it contains a vertex in the clique part, then it is also unique
maximum. The total number of colors is 2k+2 − k − 3.

Lemma 12. Let Y be a graph that consists of a K` and ` isomorphic copies of a connected graph X, such that for every
i ∈ {1, . . . , `}, a vertex of the i-th copy is connected to the i-th vertex of K` by an edge. Then, χum(Y) ≥ ` − 1 + χum(X).

Proof. By induction on `. For ` = 1, we have that χum(Y) ≥ χum(X), because Y ⊇ X. For the inductive step, for ` > 1,
if Y consists of a Kl and ` copies of X, then Y is connected, and thus contains a vertex v with unique color. But then,
Y−v ⊇ Y ′, where Y ′ is a graph that consists of a K`−1 and ` − 1 isomorphic copies of a X, each connected to a different
vertex of K`−1, and thus χum(Y) = 1 + χum(Y ′) ≥ ` − 1 + χum(X).

Lemma 13. For k ≥ 0, χum(Hk) ≥ 2k+2 − 2k − 3.

Proof. By induction. For k = 0, χum(H0) = 1. For k > 0, by the inductive hypothesis and lemma 12, χum(Hk) ≥
2k+1 − 1 − 1 + 2k+1 − 2(k − 1) − 3 = 2k+2 − 2k − 3.

Theorem 14. We have limk→∞(χum(Hk)/χcf(Hk)) = 2.

Proof. From lemmas 10, 11, 13, we have

2k+2 − 2k − 3
2k+1 − 1

≤
χum(Hk)
χcf(Hk)

≤
2k+2 − k − 3

2k+1 − 1

which implies that the ratio tends to 2.

4. The two chromatic numbers of the grid graph

In this section, we define two games on graphs, each played by two players. The first game characterizes com-
pletely the unique-maximum chromatic number of the graph. The second game is related to the conflict-free chromatic
number of the graph. We use the two games to prove that the conflict-free chromatic number of the grid is a function
of the unique-maximum chromatic number of the grid. This is useful because it allows to translate existing lower
bounds on the unique-maximum chromatic number of the grid to lower bounds on the corresponding conflict-free
chromatic number. For any graph G, and subset of its vertices V ′ ⊂ V(G), let G[V ′] denote the subgraph of G induced
by V ′.

The first game (which is played on a graph G by two players) is the connected component game:

i← 0; G0 ← G
while V(Gi) , ∅:

increment i by 1
Player 1 chooses a connected component S i of Gi−1

Player 2 chooses a vertex vi ∈ S i

Gi ← Gi−1[S i \ {vi}]

The game is finite, because if Gi is not empty, then Gi+1 is a strict subgraph of Gi. The result of the game is
its length, that is, the final value of i. Player 1 tries to make the final value of i as large as possible and thus is the
maximizer player. Player 2 tries to make the final value of i as small as possible and thus is the minimizer player.
If both players play optimally, then the result is the value of the connected component game on graph G, which is
denoted by vcs(G).

Proposition 15. In the connected component game, there is a strategy for player 2 (the minimizer), so that the result
of the game is at most χum(G), i.e., vcs(G) ≤ χum(G).
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Proof. By induction on χum(G): If χum(G) = 0, i.e., the graph is empty, the value of the game is 0. If χum(G) = k > 0,
then in the first turn some connected component S 1 is chosen by player 1. Then, the strategy of player 2 is to take
an optimal unique-maximum coloring C of G and choose a vertex v1 in S 1 that has a unique color in S 1. Then,
G1 = G[S 1 \ {v1}] ⊂ G0 and the restriction of C to S 1 \ {v1} is a unique-maximum coloring of G1 that is using at most
k − 1 colors. Thus, χum(G1) ≤ k − 1, and by the inductive hypothesis player 2 has a strategy so that the result of the
game on G1 is at most k − 1. Therefore, player 2 has a strategy so that the result of the game on G0 = G is at most
1 + k − 1 = k.

Lemma 16. For every v ∈ V(G), χum(G − v) ≥ χum(G) − 1

Proof. Assume for the sake of contradiction that there exists a v ∈ V(G) for which χum(G − v) < χum(G) − 1. Then an
optimal coloring of G − v can be extended to a coloring of G, where v has a new unique maximum color. Therefore
there is a coloring of G that uses less than χum(G) − 1 + 1 = χum(G) colors; a contradiction.

Proposition 17. In the connected component game, there is a strategy for player 1 (the maximizer), so that the result
of the game is at least χum(G), i.e., vcs(G) ≥ χum(G).

Proof. By induction on χum(G): If χum(G) = 0, i.e., the graph is empty, the result of the game is zero. If χum(G) =

k > 0, the strategy of player 1 is to choose a connected component S 1 such that χum(G[S 1]) = k. For every choice of
v1 by Player 2, by lemma 16, χum(G1) ≥ k− 1, and thus, by the inductive hypothesis player 1 has a strategy so that the
result of the game on G1 is at least k − 1. Therefore, the result of the game on G0 = G is at least 1 + k − 1 = k.

Corollary 18. For every graph, vcs(G) = χum(G).

The second game (also played on a graph G by two players) is the path game:

i← 0; G0 ← G
while V(Gi) , ∅:

increment i by 1
Player 1 chooses the set of vertices S i of a path of Gi−1

Player 2 chooses a vertex vi ∈ S i

Gi ← Gi−1[S i \ {vi}]

The only difference with the connected component game is that in the path game the vertex set S i that maximizer
chooses is the vertex set of a path of the graph Gi−1. If both players play optimally, then the result is the value of the
path game on graph G, which is denoted by vp(G).

Proposition 19. In the path game, there is a strategy for player 2 (the minimizer), so that the result of the game is at
most χcf(G), i.e., vp(G) ≤ χcf(G).

Proof. By induction on χcf(G): If χcf(G) = 0, i.e., the graph is empty, the value of the game is 0. If χcf(G) = k > 0,
then in the first turn some vertex set S 1 of a path of G is chosen by player 1. Then, the strategy of player 2 is
to find an optimal conflict-free coloring C of G and choose a vertex v1 in S 1 that has a unique color in S 1. Then,
G1 = G[S 1 \ {v1}] ⊂ G0 and the restriction of C to S 1 \ {v1} is a conflict-free coloring of G1 that is using at most k − 1
colors. Thus, χcf(G1) ≤ k − 1, and by the inductive hypothesis player 2 has a strategy so that the result of the game is
at most k − 1. Therefore, player 2 has a strategy so that the result of the game is at most 1 + k − 1 = k.

A proposition analogous to 17 for the path game is not true. For example, for the complete binary tree of four
levels (with 15 vertices, 8 of which are leaves), B4, it is not difficult to check that vp(B4) = vp(P7) = 3, but χcf(B4) = 4.

Now, we are going to concentrate on the grid graph. Assume that m is even. We intend to translate a strategy of
player 1 (the maximizer) on the connected component game for graph Gm/2 to a strategy for player 1 on the path game
for graph Gm.

Notice that for every connected graph G, there is an ordering of its vertices, v1, v2, . . . , vn such that the subgraph
induced by the first k vertices (for every k ∈ {1, . . . , n}) is also connected. Just pick a vertex to be v1, and add the other
vertices one by one such that the new vertex vi is connected to the graph induced by v1, . . . , vi−1. This is possible, since
G itself is connected. We call such an ordering of the vertices an always-connected ordering.
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Now we decompose the vertex set of Gm into groups of four vertices,

Qx,y = {(2x, 2y), (2x + 1, 2y), (2x, 2y + 1), (2x + 1, 2y + 1)},

for 0 ≤ x, y < m/2, called special quadruples, or briefly quadruples. Let Wm = {Qx,y | 0 ≤ x, y < m/2} and τ(x, y) =

Qx,y, i.e., τ is a bijection between vertices of V(Gm/2) and Wm. Extend τ for subsets of vertices of Gm/2 in a natural
way, for any S ⊆ V(Gm/2), τ(S ) =

⋃
(x,y)∈S τ(x, y). Define also a kind of inverse τ′ of τ as τ′(x, y) = (bx/2c, by/2c) for

0 ≤ x, y < m. Also, for any S ⊆ V(Gm), define τ′(S ) = {τ′(x, y) | (x, y) ∈ S }.
Let (x, y) ∈ V(Gm/2). We call vertices (x, y + 1), (x, y − 1), (x − 1, y), and (x + 1, y), if they exist, the upper, lower,

left, and right neighbors of (x, y), respectively. Similarly, quadruples Qx,y+1, Qx,y−1, Qx−1,y, and Qx+1,y the upper,
lower, left, and right neighbors of Qx,y, respectively.

Quadruple Qx,y induces four edges in Gm, {(2x, 2y+1), (2x+1, 2y+1)}, {(2x, 2y), (2x+1, 2y)}, {(2x, 2y), (2x, 2y+1)},
{(2x + 1, 2y), (2x + 1, 2y + 1)}, which we call upper, lower, left, and right edges of Qx,y, respectively.

By direction d, we mean one of the four basic directions, up, down, left, right. For a given set S ⊆ V(Gm/2), we
say that v ∈ S is open in S in direction d, if its neighbor in direction d is not in S . In this case we also say that τ(v) is
open in τ(S ) in direction d.

Lemma 20. If S ⊆ V(Gm/2) induces a connected subgraph in Gm/2, then there exists a path in Gm whose vertex set is
τ(S ).

Proof. We prove a stronger statement: If S induces a connected subgraph in Gm/2, then there is a cycle C in Gm whose
vertex set is τ(S ), and if v ∈ S is open in direction d in S , then C contains the d-edge of τ(v).

The proof is by induction on |S | = k. For k = 1, τ(S ) is one quadruple and we can take its four edges. Suppose
that the statement has been proved for |S | < k, and assume that |S | = k. Consider an always-connected ordering v1,
v2, . . . , vk of S . Let S ′ = S \ vk. By the induction hypothesis, there is a cycle C′ satisfying the requirements. Vertex
vk has at least one neighbor in S ′, say, vk is the neighbor of vi in direction d. But then, vi is open in direction d in
S ′, therefore, C′ contains the d-edge of τ(vi). Remove this edge from C′ and substitute by a path of length 5, passing
through all four vertices of τ(vk). The resulting cycle, C, contains all vertices of τ(S ), it contains each edge of τ(vk),
except the one in the opposite direction to d, and it contains all edges of C′, except the d-edge of τ(vk), but vk is not
open in S in direction d. This concludes the induction step, and the proof.

Proposition 21. For every m > 1, vp(Gm) ≥ vcs(Gbm/2c).

Proof. Assume, without loss of generality that m is even (if not work with graph Gm−1 instead). In order, to prove that
vp(Gm) ≥ vcs(Gbm/2c) it is enough, given a strategy for player 1 in the connected component game for Gm/2, to construct
a strategy for player 1 (the maximizer) in the path game for Gm, so that the result of the path game is at least as much
as the result of the connected component game. We present the argument as if player 1, apart from the path game,
plays in parallel a connected component game on Gm/2 (for which player 1 has a given strategy to choose connected
components in every round), where player 1 also chooses the moves of player 2 in the connected component game.

At round i of the path game on Gm, player 1 simulates round i of the connected component game on Gm/2. At
the start of round i, player 1 has a graph Gi−1 ⊆ Gm in the path game and a graph Ĝi−1 ⊆ Gm/2 in the connected
component game. Player 1 chooses a set Ŝ i in the simulated connected component game from his given strategy, and
then constructs the path-spanned set S i = τ(Ŝ i) (by lemma 20) and plays it in the path game. Then player 2 chooses a
vertex vi ∈ S i. Player 1 computes v̂i = τ′(vi) and simulates the move v̂i of player 2 in the connected component game.
This is a legal move for player 2 in the connected component game because v̂i ∈ Ŝ i.

We just have to prove that S i = τ(Ŝ i) is a legal move for player 1 in the path game, i.e., S i ⊆ V(Gi−1). We also
have to prove S i = τ(Ŝ i) is spanned by a path in Gi−1 but this is always true by lemma 20, since Ŝ i is a connected
vertex set in Ĝi−1. Since S i ⊆ τ(V(Ĝi−1)), it is enough to prove that at round i, τ(V(Ĝi−1)) ⊆ V(Gi−1). The proof is
by induction on i. For i = 1, G0 = Gm, Ĝ0 = Gm/2, and thus τ(V(Ĝ0)) = V(G0). At the start of round i with i > 1,
τ(V(Ĝi−1)) ⊆ V(Gi−1), by the inductive hypothesis. Then, τ(Ŝ i) = S i and τ(Ŝ i\{v̂i}) = τ(Ŝ i)\τ(v̂i) = S i\τ(v̂i) ⊆ S i\{vi},
because vi ∈ τ(v̂i). Thus, τ(V(Ĝi−1[Ŝ i \ {v̂i}])) ⊆ V(Gi−1[S i \ {vi}]), i.e., τ(V(Ĝi)) ⊆ V(Gi).

Theorem 22. For every m > 1, χcf(Gm) ≥ χum(Gbm/2c).

Proof. By proposition 19, χcf(Gm) ≥ vp(Gm), by proposition 21, vp(Gm) ≥ vcs(Gbm/2c), and by proposition 17,
vcs(Gbm/2c) ≥ χum(Gbm/2c).
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5. Lower bounds on the chromatic numbers of the grid graph

Recall that Gm is the m × m grid graph, that is, the Cartesian product of two paths, each of length m − 1. It was
shown in [1] that for m ≥ 2, χum(Gm) ≥ 1.5m. The best known upper bound is χum(Gm) ≤ 2.519m, again from [1].
The main result of this section is the following improvement of the lower bound.

Theorem 23. For m ≥ 2, χum(Gm) ≥ 5
3 m − 18 log2 m.

Proof. For any subset A ⊆ V(G), let NG(A) denote the boundary of A, that is, all vertices which are not in A, but
neighbors of some vertex in A. Observe that in a unique-maximum coloring of a connected graph G, the set of
vertices of unique colors form a separator (see, for example, [10]). Indeed, remove all vertices of unique colors from
G, let G′ be the remaining graph, and let color c be the highest remaining color. Color c does not occur uniquely, so
let u and v be two distinct vertices of color c. There can be no path in G′ from u to v, therefore, G′ is not connected.

We will use induction on m. Consider a unique-maximum coloring of Gm and take a minimal separator, formed by
vertices of unique colors. Using the separator and the coloring, after applying a carefully selected sequence of minor
operations (vertex deletion, edge deletion, edge contraction) on Gm, we obtain an induced unique-maximum coloring
(see definition 3) of Gm′ for some m′ < m, and we apply the induction hypothesis to prove the lower bound.

Throughout the proof, we consider G = Gm in its standard drawing, that is, the vertices are points (x, y), with
0 ≤ x, y ≤ m− 1, two vertices (x, y) and (x′, y′) are connected if and only if |x− x′|+ |y− y′| = 1, and edges are drawn
as straight line segments. If it is clear from the context, we do not make any notational distinction between vertices
(edges) and points (resp. segments) representing them. Denote by V the vertices of the grid, that is, V = V(G). Take
an additional vertex v, “outside” Gm, say, at (−2,−2), and connect it with all boundary vertices of Gm, so that we do
not create any edge crossing. Let G′ = G′m denote the resulting graph, Let V ′ = V(G′).

Define graph H′ and its drawing as follows. The vertex set of H′ is V ′. Vertex v is connected to the boundary
vertices of the grid, just like in G′. Two vertices, (x, y) and (x′, y′) in the grid are connected by a straight line segment
in H′ if and only if |x − x′| ≤ 1 and |y − y′| ≤ 1.

Suppose that S ⊂ V ′, and H′[S ] contains a non-self-intersecting cycle C. Let A (resp. B) be those vertices in V ′

which are inside (resp. outside) C. If A, B , ∅, then C is called a separating cycle. If A = ∅, then C is called an empty
cycle. Suppose that C is a separating cycle. Since edges of H′ and edges of G′ do not intersect each other, S separates
A and B in G′.

Suppose now that S is a separator in G′ and let A be the vertex set of one of the connected components, separated
by S . Clearly, the boundary of A, NG′ (A) belongs to S , and an easy case analysis shows that the edges of H′[NG′ (A)],
in the present drawing, separate the vertices of A from the other vertices. Suppose from now that S is a minimal
separator. Then, by the previous observations, H′[S ] contains one or more separating cycles. Let C be a separating
cycle in H′[S ] with the smallest number of points inside, and let A be the set of these points. Then NG′ (A) ⊂ C, but
since NG′ (A) already separates A from the other vertices, NG′ (A) = S . Observe that the only empty cycle in H′ is the
right angled triangle with leg 1. If H′[S ] contains such a cycle, then one of its vertices can be removed from S and
we still have a separator. Therefore, there are no empty cycles in H′[S ]. Moreover, by the minimality of S , every
separating cycle in H′[S ] contains exactly the points of A in its interior. It follows, that H′[S ] is a cycle that has A in
its interior, and the remaining points, V ′ \ (S ∪ A) in the exterior.

It is easy to see that if S is a separator in Gm, then S ∪{v} is a separator in G′m. On the other hand, if S is a separator
is G′m, then S \ {v} is a separator in G′m. Consequently, if S is a minimal separator in Gm, then either S is a minimal
separator in G′m, or S ∪ {v} is a minimal separator in G′m. In the first case we say that S is a cycle-separator (see
figure 3), in the second case we say that it is a path-separator (see figure 4) of Gm. The vertices of a cycle-separator
form a cycle in H′, and the vertices of a path-separator form a path, whose first and last vertices are the only neighbors
of v, that is, they are on the boundary of the grid, and the other vertices of S are not on the boundary.

Our bound is negative for m ≤ 64, so assume that m > 64, and the statement has been proved for smaller values of
m. Consider an optimal coloring of Gm, and let S be a minimal separator, all of whose vertices have unique colors.
Case 1: S is a cycle-separator. Let z be the smallest value of x + y over all vertices of S , and let (x, y) be the vertex
of S for which x + y = z, and y is the largest. Then vertex (x + 1, y − 1) is also a vertex of S (if not, we could remove
(x, y) to get a separator that is a subset of S , contradicting the minimality of S ). Also, one of (x, y+ 1), (x + 1, y+ 1) is
also in S . Let (x′, y′) be the vertex of S for which x + y = z, and y is the smallest. Then y′ < y, since (x + 1, y − 1) is
in S . Moreover, vertex (x′ − 1, y′ + 1) is also a vertex of S , and one of (x′ + 1, y′), (x′ + 1, y′ + 1) is also in S . Consider
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v v

Figure 3: A cycle-separator in G, G′, and H′, for m = 7

v v

Figure 4: A path-separator in G, G′, and H′, for m = 7

the following contractions of horizontal edges: (x,m − 1)(x + 1,m − 1), (x,m − 2)(x + 1,m − 2), . . ., (x, y)(x + 1, y),
(x+1, y−1)(x+2, y−1), (x+2, y−2)(x+3, y−2), . . ., (x′, y′)(x′+1, y′), (x′, y′−1)(x′+1, y′−1), . . ., (x′, 0)(x′+1, 0),
and vertical edges: (0, y)(0, y+ 1), (1, y)(1, y+ 1), . . ., (x, y)(x, y+ 1), (x + 1, y)(x + 1, y+ 1), (x + 2, y− 1)(x + 2, y), . . .,
(x′ + 1, y′)(x′ + 1, y′ + 1), (x′ + 2, y′)(x′ + 2, y′ + 1), . . ., (m − 1, y′)(m − 1, y′ + 1). We obtain a graph, which contains
Gm−1 as a subgraph and the induced coloring uses at least two less colors that the coloring of Gm. See figure 5, where
for each gray area, vertices are contracted to a single vertex. The induced coloring uses at least χum(Gm−1) colors,
therefore, we have χum(Gm) ≥ χum(Gm−1) + 2 ≥ 5

3 (m − 1) − 18 log2 (m − 1) + 2 > 5
3 m − 18 log2 m.

(x, y)

(x′, y′)

Figure 5: Graph Gm with edge contractions and its minor containing Gm−1

Case 2: S is a path-separator. By symmetry we can assume that the path starts in column x = 0. If it ends in x = 0,
y = 0, or in y = m − 1, then, we can remove column x = 0, and either row y = 0 or y = m − 1, and get a unique
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A

Bvi

vi

Figure 6: The subcase |S | = m

maximum coloring of Gm−1 with at least two less colors. Then we apply induction as in case 1. So we can assume
that S ends in x = m − 1. It follows that |S | ≥ m. We distinguish two subcases.
Subcase 2.1. S starts in x = 0, ends in x = m − 1, and |S | > m.
Orient the path formed by the vertices of S . For simplicity, call the oriented path v1, . . . v|S | also S . The edges of S can
be of eight types, left, right, upper, lower, left-upper, left-lower, right-upper, right-lower.

Suppose first that S contains two edges, one of them is vertical (left or right edge), one of them is horizontal
(upper or lower edge), say, (x, y)(x + 1, y) and (x′, y′)(x′, y′ + 1). Then contract all edges (x, i)(x + 1, i), and all edges
(i, y′)(i, y′ + 1), 0 ≤ i ≤ m−1, to obtain Gm−1, whose induced coloring uses at most χum(Gm)−2 colors. Therefore, we
have χum(Gm) ≥ χum(Gm−1) + 2 ≥ 5

3 (m− 1)− 18 log2 (m − 1) + 2 > 5m/3− 18 log2 m. So, we can assume in the sequel
that either there are no vertical edges, or no horizontal edges in S . Suppose that there are no horizontal edges, and let
vi = (x, y) be a vertex of S where y is the largest. Then vi−1vi is an upper-right edge, and vivi+1 is a lower-right edge,
or vi−1vi is an upper-left edge, and vivi+1 is a lower-left edge. We can assume the first one, otherwise we can take the
opposite orientation of S . Let vi, . . . , v j be a maximal interval of S where all edges are lower-right. By assumption,
edge v jv j+1 can not be horizontal. Since S is a minimal separator, edge v jv j+1 can not be upper. If edge v jv j+1 is lower,
or lower-left, then we can proceed just like in the case of cycle-separators, i.e., by a sequence of edge contractions we
can obtain an induced coloring of Gm with two less colors and we are done by induction. So, v jv j+1 can only be an
upper-right edge. We can apply the same argument for the next maximal interval v j, . . . , vk and obtain that vkvk+1 is a
lower-right edge. We can argue similarly “backwards” on S , if vl, . . . , vi is a maximal interval of upper-right edges,
then vl−1vl is a lower-right edge. It follows, that all edges of S are either upper-right, or lower-right. But then S can
not have more then m vertices, a contradiction. In the case where there are no vertical edges, the argument is almost
exactly the same.
Subcase 2.2. S starts in x = 0, ends in x = m − 1, and |S | = m.
If |S | = m, then S = {v1, v2, . . . , vm} such that vi = (i − 1, yi), for every i. We show that Gm − S contains a subgraph
isomorphic to G2k.

Suppose that 5k ≤ m ≤ 5k + 4. Consider the set of vertices

A = {(x, y) | k ≤ x ≤ 4k − 1, 0 ≤ y ≤ 2k − 1}.

Set A induces a 3k × 2k grid graph, G3k,2k, in Gm. If A ∩ S = ∅, then Gm − S ⊇ G3k,2k ⊇ G2k; otherwise some vi ∈ S
belongs to A, i.e., vi = (i, yi) with k ≤ i ≤ 4k − 1 and 0 ≤ yi ≤ 2k − 1. Then, consider the set of vertices

Bvi = {(x, y) | i − k + 1 ≤ x ≤ i + k, 3k ≤ y ≤ m − 1},
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which contains a G2k subgraph in Gm and it is disjoint from S . Therefore, Gm − S contains a subgraph isomorphic to
G2k, and thus χum(Gm) ≥ m + χum(G2k) ≥ m + 10

3 k − 18 log2 2k ≥ 5
3 m − 18 log2 m.

Remark 24. By a slightly more careful calculation and detailed case analysis we could get χum(Gm) ≥ 5
3 m − log5/2 m.

An immediate corollary from theorem 22 is the following.

Corollary 25. For m ≥ 2, χcf(Gm) ≥ 5
6 m − o(m).

6. Discussion and open problems

As we mentioned in the introduction, conflict-free and unique-maximum colorings can be defined for hypergraphs.
In the literature of conflict-free colorings, hypergraphs that are induced by geometric shapes have been in the focus.
It would be interesting to show possible relations of the respective chromatic numbers in this geometric setting.

An interesting open problem is to determine the exact value of the unique-maximum chromatic number for the
grid Gm. In this paper, we improved the lower bound asymptotically to 5m/3, and we believe that this bound is still
far from optimal. Notice that for every case in our lower bound proof in section 5, the induction step would allow
us to prove a lower bound of the form 2m − o(m), with the exception of the last case, where |S | = m; in a sense, this
|S | = m case is the “bottleneck” of the proof. We believe that using a more complicated induction, involving grids of
rectangular shapes, could lead to an improvement.

Another area for improvement is the relation between the two chromatic numbers for general graphs. We have
only found graphs which have unique-maximum chromatic number about twice the conflict-free chromatic number,
but the only bound we have proved on χum(G) is exponential in χcf(G).

Finally, the coNP-completeness of checking whether a coloring is conflict-free, implies that the decision problem
for the conflict-free chromatic number (i.e., “Given a graph G and an integer k, is it true that χcf(G) ≤ k?”) is in
complexity class Σ p

2 (at the second level of the polynomial hierarchy). An interesting direction for research would be
to attempt a proof of Σ p

2 -completeness for this last decision problem.
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[4] Hans L. Bodlaender, John R. Gilbert, Hjálmtyr Hafsteinsson, and Ton Kloks. Approximating treewidth, pathwidth, frontsize, and shortest
elimination tree. Journal of Algorithms, 18(2):238–255, 1995.
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