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Abstract

We investigate the relationship between two kinds of vertex colorings of hypergraphs: unique-
maximum colorings and conflict-free colorings. In a unique-maximum coloring, the colors are
ordered, and in every hyperedge of the hypergraph the maximum color appears only once. In
a conflict-free coloring, in every hyperedge of the hypergraph there is a color that appears only
once. We concentrate in hypergraphs that are induced by paths in tree graphs.
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1 Introduction

In this paper we study some special vertex colorings of a hypergraph H = (V,E), i.e., functions
C : V → IN+. Since a hypergraph is a generalization of a graph, it is natural to consider how
to generalize traditional vertex coloring of a graph (in which two vertices neighboring with an
edge in the graph have to be assigned different colors by the function C) to a vertex coloring of
a hypergraph. Vertex coloring in hypergraphs can be defined in many ways, so that restricting
the definition to simple graphs coincides with traditional graph coloring. At one extreme, it is
only required that the vertices of each hyperedge are not all colored with the same color (except for
singleton hyperedges). This is called a non-monochromatic coloring of a hypergraph. The minimum
number of colors necessary to color in such a way a hypergraph H is the (non-monochromatic)
chromatic number of H, denoted by χ(H). At the other extreme, we can require that the vertices
of each hyperedge are all colored with different colors. This is called a colorful or rainbow coloring
of H and we have the corresponding rainbow chromatic number of H, denoted by χrb(H). In this
paper we study three types of vertex colorings of hypergraphs that are between the above two
extremes. The first two have been studied before [7]; the third is new, we use it in our proofs, and
it could also be of independent interest.

Definition 1.1. A unique-maximum coloring of H = (V,E) with k colors is a function C : V →
{1, . . . , k} such that for each e ∈ E the maximum color occurs exactly once on the vertices of e.
The minimum k for which a hypergraph H has a unique-maximum coloring with k colors is called
the unique-maximum chromatic number of H and is denoted by χum(H).

Definition 1.2. A conflict-free coloring ofH = (V,E) with k colors is a function C : V → {1, . . . , k}
such that for each e ∈ E there is a color that occurs exactly once on the vertices of e. The minimum
k for which a hypergraph H has a conflict-free coloring with k colors is called the conflict-free
chromatic number of H and is denoted by χcf(H).
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Definition 1.3. An odd coloring of H = (V,E) with k colors is a function C : V → {1, . . . , k} such
that for each e ∈ E there is a color that occurs an odd number of times on the vertices of e. The
minimum k for which a hypergraph H has an odd coloring with k colors is called the odd chromatic
number of H and is denoted by χodd(H).

Every rainbow coloring is unique-maximum, every unique-maximum coloring is conflict-free,
and every conflict-free coloring is odd and non-monochromatic. Therefore, for every hypergraph H,
max(χ(H), χodd(H)) ≤ χcf(H) ≤ χum(H) ≤ χrb(H). Note that an odd coloring can be monochro-
matic.

The study of conflict-free coloring hypergraphs started in [7], with an emphasis in hypergraphs
induced by geometric shapes. The main application of conflict-free coloring is that it represents a
frequency assignment for cellular networks. A cellular network consists of two kinds of nodes: base
stations and mobile agents. Base stations have fixed positions and provide the backbone of the
network; they are represented by vertices in V . Mobile agents are the clients of the network and
they are served by base stations. This is done as follows: Every base station has a fixed frequency;
this is represented by the coloring C, i.e., colors represent frequencies. If an agent wants to establish
a link with a base station it has to tune itself to this base station’s frequency. Since agents are
mobile, they can be in the range of many different base stations. To avoid interference, the system
must assign frequencies to base stations in the following way: For any range, there must be a base
station in the range with a frequency that is not used by some other base station in the range. One
can solve the problem by assigning n different frequencies to the n base stations. However, using
many frequencies is expensive, and therefore, a scheme that reuses frequencies, where possible, is
preferable. Conflict-free coloring problems have been the subject of many recent papers due to
their practical and theoretical interest (see e.g. [16, 8, 5, 6, 1]). Most approaches in the conflict-free
coloring literature use unique-maximum colorings (a notable exception is the ‘triples’ algorithm in
[1]), because unique-maximum colorings are easier to argue about in proofs, due to their additional
structure. Another advantage of unique-maximum colorings is the simplicity of computing the
unique color in any range (it is always the maximum color), given a unique-maximum coloring,
which can be helpful if very simple mobile devices are used by the agents.

Other hypergraphs that have been studied with respect to these colorings, are ones which are
induced by a graph and its neighborhoods or its paths. In particular, given a graph G, consider the
hypergraph with the same vertex set as G and a hyperedge for every distinct vertex neighborhood
of G; such conflict-free colorings have been studied in [3, 15]. Alternatively, given a graph G,
consider the hypergraph H with the same vertex set as G and a hyperedge for every distinct vertex
set that can be spanned by a path of G. A unique-maximum (resp. conflict-free, odd) coloring
of H is called a unique-maximum (resp. conflict-free, odd) coloring of G with respect to paths;
we also define the corresponding graph chromatic numbers, χp

um(G) = χum(H), χp
cf(G) = χcf(H)

and χp
odd(G) = χodd(H). Sometimes to improve readability of the text, we simply talk about the

UM (resp. CF, ODD) of a graph. Unique maximum colorings with respect to paths of graphs are
known alternatively in the literature as ordered colorings or vertex rankings, and are closely related
to tree-depth [14]. The problem of computing such unique-maximum colorings is a well-known and
widely studied problem (see e.g. [10]) with many applications including VLSI design [11] and parallel
Cholesky factorization of matrices [12]. The problem is also interesting for the Operations Research
community, because it has applications in planning efficient assembly of products in manufacturing
systems [9]. In general, it seems that the vertex ranking problem can model situations where
interrelated tasks have to be accomplished fast in parallel (assembly from parts, parallel query
optimization in databases, etc.) For general graphs, finding the exact unique-maximum chromatic
number with respect to paths of a graph is NP-complete [17, 13] and there is a polynomial time
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O(log2 n) approximation algorithm [2], where n is the number of vertices. The paper [4] studied the
relationship between the two graph chromatic numbers, χp

um(G) and χp
cf(G). The authors proved

that even checking whether a given coloring of a graph is conflict-free is coNP-complete (whereas
the same problem is in P for unique-maximum colorings). Moreover, they showed that for every
graph G, χp

um(G) ≤ 2χ
p
cf(G)−1 and provided a sequence of graphs for which the ratio χp

um(G)/χp
cf(G)

tends to 2.
In this work, we study the relationship between unique-maximum and conflict-free colorings.

First we give an exact answer to the question “How larger than χcf(H) can χum(H) be?” for a
general hypergraph H showing that this gap can be big. Then we turn to hypergraphs induced by
paths in graphs and prove a better bound for χp

cf(T ) and χp
cf(T ), where T is a tree graph. The

reason we attempt to answer the question for trees is that the upper and lower bound for general
graphs from [4] are quite far apart. Indeed, for trees we manage to prove upper and lower bounds
on the difference of χp

cf(T ) and χp
cf(T ) that are closer than the ones for general graphs.

Paper organization. In section 2, we show that if for a hypergraph H, χcf(H) = k > 1 , then
χum(H) is bounded from above, roughly, by k−1

k |V |, and this is tight; the result remains true even
if we restrict ourselves to uniform hypergraphs. In section 3, we show that for every tree graph T ,
χp

um(T ) ≤ (χp
cf(T ))3 and provide a sequence of trees for which the ratio χp

um(T )/χp
cf(T ) tends to a

constant c with 1 < c < 2. Conclusions and open problems are presented in section 4.

1.1 Preliminaries

Proposition 1.4. Each of the graph chromatic numbers χp
um, χp

cf, and χp
odd, is monotone with

respect to subgraphs, i.e., if H ⊆ G, then χp
�(H) ≤ χp

�(G), where � ∈ {um, cf, odd}.

Proof. A subgraph H of a graph G contains a subset of the paths of G.

Definition 1.5 (Parity vector). Given a coloring C : V → {1, . . . , k} and a set e ⊆ V , the parity
vector of e is the vector of length k in which the ith coordinate equals the parity (0 or 1) of the
number of elements in e colored with i.

Remark 1.6. A coloring of a hypergraph is odd if and only if the parity vector of every hyperedge
is not the all-zero vector.

2 The two chromatic numbers for general hypergraphs

In general it is not possible to bound χcf with a function of χodd because if we take our hyperedges to
be all triples of {1, . . . , n}, for the resulting hypergraph H we have χodd(H) = 1 and χcf(H) =

⌈
n
2

⌉
.

Although χcf(H) = 1 implies χum(H) = 1, we can have a big gap as is shown by the following
theorem.

Theorem 2.1. For an arbitrary hypergraph H on n vertices, χum(H) ≤ n − dn/χcf(H)e + 1.
Moreover, this is the best possible bound, i.e., for arbitrary n there exists a hypergraph for which
equality holds.

Proof. A simple algorithm achieving the upper bound is the following. Given a H with χcf(H) = k,
take a conflict-free coloring of H with k colors, color the biggest color class with color 1, all the other
vertices with all different colors (bigger than 1). It is not difficult to see that this is a unique-max
coloring, and it uses at most n− dn/ke+ 1 colors.
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For a given n and k equality holds for the hypergraph H whose n vertices are partitioned into
k almost equal parts, all of size dn/ke or dn/ke−1 and its edges are all sets of size 2 and 3 covering
vertices from exactly 2 parts.

For this graph we have χcf(H) = k because in any conflict-free coloring of H there are no
two vertices in different parts having the same color and χum(H) ≤ n− dn/ke+ 1 because in any
unique-max coloring of H all vertices must have different colors except the vertices of one part.

For hypergraphs without small hyperedges, we can make the inequality tighter.

Theorem 2.2. If l ≥ 3 then for an arbitrary l-uniform hypergraph H with χcf(H) = k having
n ≥ 2kl vertices we have χum(H) ≤ n − dn/ke − l + 4. Moreover, this is the best possible bound,
i.e., for arbitrary n ≥ 2kl there exists a hypergraph for which equality holds.

The proof is similar to the previous, although longer, and can be found in the Appendix.

3 The two chromatic numbers for trees

In this section to ease readability we use UM for χp
um, CF for χp

cf and ODD for χp
odd. We denote

by Pn the path graph with n vertices. As a warm-up we prove the following simple claim. (Note
that log always denotes the logarithm of base 2.)

Claim 3.1. For n ≥ 1, UM(Pn) = CF (Pn) = ODD(Pn) = dlog(n+ 1)e.

Proof. It is easy to see that UM(Pn) ≤ dlog(n+ 1)e, just give the biggest color to (one of) the
central vertex(es). Since we know that UM(Pn) ≥ CF (Pn) ≥ ODD(Pn), it is enough to prove
that 2ODD(Pn) > n. Take the n paths starting from one endpoint. If there were two with the same
parity vector, their symmetric difference (which is also a path) would contain an even number of
each color. Thus we have at least n different parity vectors, none of which is the all-zero vector.
But the number of non-zero parity vectors is at most 2ODD(Pn) − 1.

3.1 Upper bound for binary trees

We denote by Bd the (rooted) complete binary tree with d levels (and 2d − 1 vertices). We prove
a quadratic upper bound on the gap of complete binary trees. In fact, we will prove a stronger
statement, a bound on the gap of UM and ODD. It is easy to see that UM(Bd) = d; for an optimal
unique-maximum coloring, color the leaves of Bd with color 1, their parents with color 2, and so
on, until you color the root with color d; for a matching lower bound, use induction on d.

Definition 3.2. A graph H is a subdivision of G if H is obtained by substituting every edge of G
by a path. The original vertices of G in H are called branch vertices.

Given a rooted tree T with root vertex r, consider the distance dr(v) of every vertex v from the
root. We say that a subdivision B∗ of Bd contained in T is compatible with T , if for every branch
vertex v and for every branch vertex v′ which is a descendant of v in the natural ordering of the
Bd tree, we have dr(v) < dr(v′).

We first need the following lemma.

Lemma 3.3. If we color with k colors (without any restrictions) the vertices of a rooted tree T
containing a compatible to T subdivision B∗ of Bd, then there exists a vector a = (a1, a2, ..ak) such
that

∑k
i=1 ai = d and for every i ∈ {1, . . . , k}, B∗ contains a compatible to T subdivision of Bai

whose branch vertices are all colored with i.
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Proof. By induction on d. Consider the branch vertex v of B∗ that corresponds to the root of Bd.
If deleting v gives two different vectors in the two subtrees, then we can take their coordinate-wise
maximum. If the vectors are the same, we can increase ai for the color i of v.

Theorem 3.4. For d ≥ 1 and for every subdivision B∗ of Bd, ODD(B∗) ≥
√
d.

Proof. Fix an optimal odd coloring with k colors. Fix an i for which in lemma 3.3 we have ai ≥ d
k .

Consider the 2ai−1 paths that originate in a leaf of the Bai subdivision and end in its root
branch vertex. We claim that the parity vectors of the 2ai−1 paths must be all different. Indeed,
if there were two paths with the same parity vector, then the symmetric difference of the paths
plus their lowest common vertex would form a path where the parity of each color is even, except
maybe for color i, but since this new path starts and ends with color i, deleting any of its ends
yields a path whose parity vector is the all-zero vector, a contradiction.

There are at most 2k − 1 parity vectors, thus 2k − 1 ≥ 2ai−1 ≥ 2dd/ke−1. From this we get
k >

⌈
d
k

⌉
− 1 which is equivalent to k ≥

⌈
d
k

⌉
using the integrality, thus k ≥

√
d.

3.2 Upper bound for arbitrary trees

We will try to find either a long path or a deep binary tree in every tree with high UM. For this,
we need the notion of UM -critical trees and their characterization from [10].

Definition 3.5. A graph is UM-critical, if the UM of any of its subgraphs is smaller than its UM.
We also say that a graph is k-UM-critical, if it is UM-critical and its UM equals k.

Example 3.6. Kk and the path with 2k−1 vertices are both k-UM-critical. For k ≤ 3 there is a
unique k-UM-critical tree, the path with 2k−1 vertices. The graph with 8 vertices that is obtained
by connecting two middle vertices of two paths with 4 vertices is 4-UM-critical and its CF is 3.
(This is the smallest tree where the CF and UM chromatic numbers differ.)

Theorem 3.7 (Theorem 2.1 in [10]). For k > 1, a tree is k-UM-critical if and only if it has an
edge that connects two (k − 1)-UM-critical trees.

The proof of the theorem can be found in [10] or the interested reader can devise it herself.

Remark 3.8. A k-UM-critical tree has exactly 2k−1 vertices and the connecting edge must always
be the central edge of the tree. This implies that there is a unique way to partition the vertices of
the k-UM-critical tree to two sets of vertices, each inducing a (k − 1)-UM-critical tree, and so on.

Now we can define the structure trees of UM-critical trees.

Definition 3.9. For 1 ≤ l ≤ k, the l-deep structure tree of a k-UM-critical tree is the tree graph
with a vertex for every one of the 2l (k − l)-UM-critical subtrees that we obtain by repeatedly
applying theorem 3.7, and an edge between two vertices if the corresponding (k − l)-UM-critical
subtrees have an edge between them in the k-UM-critical tree.

Example 3.10. The 1-deep structure tree of any UM-critical tree is an edge. The 2-deep structure
tree of any UM-critical tree is a path with 4 vertices. The k-deep structure tree of a k-UM-critical
tree is itself.

Remark 3.11. It is not difficult to prove that the l-deep structure tree of a UM-critical tree is an
l-UM-critical tree.

We start with a few simple observations.
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Proposition 3.12. If an (l + 1)-UM-critical tree has no vertex of degree at least 3, then it is the
path with 2l vertices.

Proof. Delete the central edge and use induction.

Proposition 3.13. If an (l + 2)-UM-critical tree has only one vertex of degree at least 3, then it
contains a path with 2l vertices that ends in this vertex.

Proof. After deleting its central edge, one of the resulting (l+ 1)-UM-critical trees must be a path
that was connected to the rest of the graph with one of its ends, thus we can extend it until the
high degree vertex.

Proposition 3.14. If a tree contains two non-adjacent vertices with degree at least 3, then it
contains a subdivision of B3.

Proof. The non-adjacent degree 3 vertices will be the second level of the binary tree, and any vertex
on the path connecting them the root.

Claim 3.15. An (l + 2)-UM-critical tree contains a path with 2l vertices or a subdivision of B3.

Proof. Because of the previous propositions, we can suppose that our tree has exactly two vertices
with degree at least 3 and these are adjacent. If the central edge is not the one between these
vertices, then the graph must contain an (l + 1)-UM-critical subgraph without any vertex with
degree at least 3, thus it is the path with 2l vertices because of proposition 3.12. If it connects the
two high degree vertices, then, using proposition 3.13, we have two paths with 2l−1 vertices in the
(l + 1)-UM-critical subgraphs obtained by deleting the central edge ending in these vertices, thus
with the central edge they form a path with 2l vertices.

Figure 1: Constructing big binary trees using induction for structure trees.

We are now ready to prove our main lemma, before the proof of the upper bound.

Lemma 3.16. Every k-UM-critical tree contains a path with 2l vertices or a subdivision of Bd k+l+3
l+2 e,

if k ≥ 3.

Proof. The proof is by induction on k. For 3 ≤ k ≤ l + 1, the statement is true since B2 = P3.
For l + 2 ≤ k ≤ 2l + 3, the statement is equivalent to our claim 3.15. For k > 2l + 3, take the
(l + 2)-deep structure tree S of the tree. If S does not contain a path with 2l vertices, then, using
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claim 3.15, S contains a subdivision of B3. Every one of the four leaf branch vertices of the above
B3 subdivision corresponds to a (k − l − 2)-UM-critical subtree of the original tree. By induction,
each one of the above four subtrees must contain a path with 2l vertices or a subdivision of the
complete binary tree with

⌈
k−l−2+l+3

l+2

⌉
=
⌈
k+l+3
l+2

⌉
− 1 levels. If any of them contains the path, we

are done. If each one of them contains a Bd k+l+3
l+2 e−1 subdivision, then for every one of the four

leaves, we can connect at least one of the two disjoint Bd k+l+3
l+2 e−2 subdivisions of the Bd k+l+3

l+2 e−1

subdivision in the leaf (as in the figure, where each of the four relevant B k+l+3
l+2

−2 subdivisions and

the paths connecting them are shown with heavier lines) to obtain a subdivision of a complete
binary tree with

⌈
k+l+3
l+2

⌉
− 2 + 2 levels, thus we are done.

Theorem 3.17. For every tree T , ODD(T ) ≥ (UM(T ))
1
3 −O(1).

Proof. If UM(T ) = k, then T contains a k-UM-critical tree, which from lemma 3.16 contains
a P2l or a subdivision B∗ of Bd k+l+3

l+2 e. Using monotonicity of ODD with respect to subgraphs

(proposition 1.4), together with ODD(P2l) = l + 1 (claim 3.1) and ODD(B∗) ≥
√

k+l+3
l+2 (from

theorem 3.4), we get ODD(T ) ≥ max
(
l + 1,

√
k+l+3
l+2

)
. Choosing l to be the closest integer to the

solution of l + 1 =
√

k+l+3
l+2 , we get l = k

1
3 +Θ(1). Therefore, ODD(T ) ≥ (UM(T ))

1
3 −O(1).

3.3 Lower bound for binary trees

We have seen that UM(Bd) = d. We intend to show conflict-free colorings of some complete binary
trees that use substantially less colors. We start with a simple example demonstrating our method.

Claim 3.18. CF (B7) ≤ 6.

Proof. Color the root with 1, the second level with 2. Deleting the colored vertices leaves four B5

subtrees. In each of these subtrees, every level will be monochromatic. From top to bottom, in
the first use the colors 3, 4, 5, 1, 2, in the second 4, 5, 6, 1, 2, in the third 5, 6, 3, 1, 2 and in the forth
6, 3, 4, 1, 2. It is not difficult to verify that this is indeed a conflict-free coloring (but it will also
follow from later results). Observe that in the top 2 levels 2 colors are used, in the next 3 levels 4
colors, and in the last 2 levels the same 2 colors are used as the ones in the top level.

Corollary 3.19. CF (B2(r+1)+3r) ≤ 4r + 2.

Proof. In the previous construction, every leaf had color 2 and their parents had color 1. Every
such three vertex part can be the top of a new tree, similar to the original, and replacing 3, 4, 5, 6
with four new colors. This gives a tree with 12 levels and 10 colors. It is not difficult to verify
that this is indeed a conflict-free coloring (but it will also follow from later results). Repeatedly
applying this procedure, so that we have colors 1, 2 appearing in 2(r+ 1) levels and r disjoint sets
of 4 colors each, we get a coloring of B2(r+1)+3r using 4r + 2 colors.

To examine more closely why these colorings are conflict-free, we need to define some notions.

Definition 3.20. A family F of ordered sets is said to be prefix set-free, if any prefix of any ordered
set is different from any other ordered set as a set (without the ordering). If the ground set has n
elements, every sequence has length at least k and the cardinality of F is at least 2d, then we say
that F is a [k, d, n] PSF family.
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Example 3.21. {1, 3},{1, 2, 3} is a [2, 1, 3] PSF family and {1},{2, 1},{2, 3},{3, 1}{3, 1, 2} is a [1, 2, 3]
PSF family but {2, 1},{1, 2, 3} is not a PSF family.

Claim 3.22. For any [k, d, n] PSF family d ≤ log
∑n

i=k

(
n
i

)
.

Proof. Any two ordered sets must differ as sets.

Claim 3.23. There is a [k, d, n] PSF family with d =
⌊
log
(
n
k

)⌋
.

Proof. Take all k element subsets of {1, . . . , n} and order each arbitrarily.

Since these bounds do not differ much if k > (1
2 +ε)n, we do not attempt to get sharper bounds.

Theorem 3.24. If there is a [k, d, n] PSF family where the size of every set is at most k+ d, then
CF (Bd(r+1)+kr) ≤ nr + d.

Proof. First, we show that CF (Bk+2d) ≤ n+ d. Color the top d levels with d colors. Remove the
colored vertices and consider the 2d Bk+d subtrees left. To each associate an ordered set from the
[k, d, n] PSF family and color the whole ith level with one color, the ith element of the associated
ordered set. Deleting also these colored vertices, we are left with subtrees with at most d levels,
which we can color with (at most) the same d colors we used for the top levels.

By repeating the above procedure r times for Bd(r+1)+kr, as in corollary 3.19, we obtain
CF (Bd(r+1)+kr) ≤ nr + d.

Corollary 3.25. For the sequence of complete binary trees, {Bi}∞i=1, the limit of the ratio of the
UM to the CF chromatic number is at least log 3 ≈ 1.58.

The existence of the limit is left as an easy exercise to the interested reader.

Proof of corollary 3.25. Since CF (Bd(r+1)+kr) ≤ nr + d, the ratio of UM to CF for Bd(r+1)+kr is
at least (d(r + 1) + kr)/(nr + d), which tends to (d + k)/n as r → ∞. From claim 3.23 we can
choose d = blog

(
n
k

)
c. If we substitute k with xn, then a short calculation shows that to maximize

(d + k)/n we have to maximize x + H(x), where H(x) = −x log x − (1 − x) log(1 − x) (entropy).
By derivation we can determine that this function attains its maximum at x = 2

3 , giving a value of
log 3 as a lower bound for the limit.

4 Discussion and open problems

In the literature of conflict-free coloring, hypergraphs that are induced by geometric shapes have
been in the focus. It would be interesting to show possible relations of the respective chromatic
numbers in this setting.

The exact relationship between the two chromatic numbers with respect to paths for general
graphs still remains an open problem. In [4], only graphs which have unique-maximum chromatic
number about twice the conflict-free chromatic number where exhibited, but the only bound proved
on χp

um(G) was exponential in χp
cf(G). In fact it is even possible that χp

um(G) ≤ 2χp
cf(G)− 2. The

first step to prove this would be to show that χp
um(T ) = O(χp

cf(T )) for trees. It would also be
interesting to extend our results to other classes of graphs.
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Appendix

4.1 The proof of theorem 2.2

We abbreviate conflict-free coloring as cf coloring and unique-max coloring as um coloring.

Proof. First we show an algorithm that achieves a um coloring with n−dn/ke− l+ 4 colors. Given
an l-uniform hypergraph H on n vertices with χcf(H) = k, take a cf coloring of H using k colors.
Color the vertices of the biggest color class P1 with color 1, color min(l − 2, |P2|) vertices of the
second biggest color class P2 with color 2, finally color all other vertices with all different colors.
We prove that this is a um coloring of H, i.e. every edge of H is um colored. Take an arbitrary
edge e, denote by c the biggest color among its vertices’ colors. If c is bigger than 2, then the edge
is um colored as only one vertex has color c. If c is 2 then e can be covered by P1 and P2. By
the definition of the partition, every edge intersects some Pi in exactly one vertex (as the original
coloring was conflict-free). Thus, e intersects P1 or P2 in exactly one vertex (and the other in l−1).
If e intersects P2 in l− 1 vertices, then it covers a vertex with color bigger than 2, a contradiction.
If e intersects P2 in 1 vertex and P1 in l − 1 then it is um colored.

The number of colors x used in this coloring is 1+1+(|P2|−min(l−2, |P2|))+(n−|P1|−|P2|) =
n − |P1| −min(l − 2, |P2|) + 2. We finish the proof of the upper bound by showing that this is at
most n−dn/ke− l+4. If |P2| ≥ l−2 then this number is exactly n−dn/ke− l+4 indeed. Otherwise
|P2| = l′ for some l′ < l− 2. If |P1| ≥ dn/ke+ l− l′− 2 then we are done. If |P1| < dn/ke+ l− l′− 2
then using the fact that n ≤ |P1|+ (k − 1)|P2|, easy computation shows that n < kl, contradicting
our assumption.

For a given k and l and n ≥ 2kl equality holds for the l-uniform hypergraph H defined in the
following way. We have n vertices partitioned into k almost equal parts P1, P2, . . . , Pk, the first k′

having size dn/ke, the rest having size dn/ke − 1. The edges of the graph are all the edges of size
l for which there is a part Pi that intersects the edge in exactly one vertex. During the rest of the
proof we will use several times the pigeonhole principle on the above defined parts.

Trivially, a coloring defined by the partition is a cf coloring using k colors, yet we also have to
prove that there is no cf coloring using less than k of colors. For that, take a cf coloring of H with
the least possible number of colors.

For a color c, if its color class C is covered by some Pi then its size is at most |Pi|. Thus, we
have at most k′ such color classes of size dn/ke and the rest is of size at most dn/ke−1. For a color
c for which its color class C is not covered by one part of the partition, C must intersect at least
two different parts, Pi and Pj 6= Pi. If |C| > 2l − 4 then either there is an l-subset of C having
exactly one point from Pi or there is an l-subset of C having exactly one point from Pj , which is
a contradiction as these l-subsets would be monochromatic edges of H. If |C| ≤ 2l − 4 then using
our assumption n ≥ 2kl implies 2l − 4 < dn/ke − 1, i.e. if a color class is not covered by some Pi
then it is smaller than dn/ke−1. These imply that the only way to color all the vertices using only
k colors is that if we do not have color classes intersecting two parts and every color class equals to
a part of the partition. By this we proved that if n ≥ 2kl then χcf(H) = k and also that the only
optimal coloring is the one defined by the partition.

Now take a um coloring with the least possible number of colors, we have to prove that it uses
at least n− dn/ke − l + 4 colors. We define c to be the biggest color for which there are at least 2
vertices having color c. By definition every color bigger than c is used only at most once in this um
coloring. We define C as the union of the vertices with color c and C ′ as the union of the vertices
having color c or smaller.
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Observation 4.1. The um coloring uses n− |C ′|+ c colors.

As every edge is um colored, the following is true.

Observation 4.2. There is no edge that contains only vertices from C ′ and contains at least two
vertices from C.

If C ′ can be covered by some Pi, then |C ′| ≤ dn/ke and so we used at least n − dn/ke + 1 ≥
n − dn/ke − l + 4 colors altogether. If C ′ cannot be covered by one Pi of the partition, then we
have 3 cases:

(i) C cannot be covered by one part.

In this case there are two vertices with color c that are in different parts, x in Pi and y
in some Pj 6= Pi. If |C ′| > 2l − 4, then there is an l-subset of C ′ containing only x from
Pi and l − 1 vertices from other parts (including y) or an l-subset of C ′ containing only y
from Pj and l − 1 vertices from other parts (including x). Any of these two subsets would
be an edge of H contradicting observation 4.2. Thus |C ′| ≤ 2l − 4 and so we used at least
n− (2l − 4) + 1 ≥ n− dn/ke − l + 4 colors (for the last inequality we used that n ≥ 2kl).

(ii) C is contained in some Pi and C ′ can be covered by two parts Pi and Pj .

If |C ′ ∩ Pi| > l − 2 then there exists an l-subset of C ′ containing exactly one vertex from Pj
and l − 1 vertices from Pi such that at least two of these vertices have color c. This subset
would be an edge of H contradicting observation 4.2. Thus, |C ′| ≤ |Pj |+ l−2 ≤ dn/ke+ l−2,
and as c ≥ 2 in this case, we used at least n− (dn/ke+ l− 2) + 2 = n− dn/ke − l+ 4 colors.

(iii) C is contained in some Pi and C ′ cannot be covered by two parts.

In this case C ′ contains points from at least three parts, Pi, Pj and some Ph. Now it is easy
to see that if |C ′| > 2l− 6 then there is an l-subset of C ′ containing at least two vertices from
Pi that either has exactly one vertex from Pj or exactly one vertex from Ph. This subset
would be an edge in H contradicting observation 4.2. Thus, |C ′| ≤ 2l − 6, and as c ≥ 2, we
used at least n− (2l − 6) + 2 ≥ n− dn/ke − l + 4 colors.
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