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Abstract

Given a hypergraph H = (V, E), a coloring of its vertices is said to be conflict-free if for every
hyperedge S ∈ E there is at least one vertex in S whose color is distinct from the colors of all
other vertices in S. The study of this notion is motivated by frequency assignment problems in
wireless networks. We introduce and study the list-coloring (or choice) version of this notion.
List coloring arises naturally in the context of wireless networks.

1 Introduction and preliminaries

Before introducing our results, let us start with several definitions and notations that will be used
throughout the paper.

Definition 1.1. Let H = (V, E) be a hypergraph and let C be a coloring C : V → N+:

• We say that C is a proper coloring if for every hyperedge S ∈ E with |S| ≥ 2 there exist two
vertices u, v ∈ S such that C(u) 6= C(v). That is, every hyperedge with at least two vertices
is non-monochromatic.

• We say that C is a conflict-free coloring (cf-coloring in short) if for every hyperedge S ∈ E
there exists a color i ∈ N such that |S ∩ C−1(i)| = 1. That is, every hyperedge S ∈ E contains
some vertex whose color is unique in S.

We denote by χ(H) the minimum integer k for which H admits a proper coloring with a total
of k colors. We denote by χcf(H) the minimum integer k for which H admits a cf-coloring with a
total of k colors. Obviously, every cf-coloring of H is also a proper coloring but the converse is not
necessarily true. Thus, we have: χcf(H) ≥ χ(H).

For several geometric hypergraphs, the parameters χcf(H) and χ(H) are well studied and in
some cases well understood. The study of cf-coloring was initiated in the work of Even et al. [18]
and of Smorodinsky [28] and was extended by numerous other papers (c.f., [1, 4, 9, 12, 13, 14,
19, 23, 26, 27]). The study was initially motivated by its application to frequency assignment for
cellular networks. A cellular network consists of two kinds of nodes: base stations and mobile
clients. Base stations have fixed positions and provide the backbone of the network; they can be
modeled, say, as discs in the plane that represent the area covered by each base station’s antenna.
Every base station emits at a fixed frequency. If a client wants to establish a link with a base
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station it has to tune itself to this base station’s frequency. Clients, however, can be in the range
of many different base stations. To avoid interference, the system must assign frequencies to base
stations in the following way: For any point p in the plane (representing location of a client), there
must be at least one base station which covers p and with a frequency that is not used by any other
base station covering p. Since frequencies are limited and costly, a scheme that reuses frequencies,
where possible, is desirable. Let us formulate this in the language of hypergraph coloring. Let
D be the set of discs representing the antennas. We thus seek the minimum number of colors k
such that one can assign each disc with one of the k colors so that in every point p in the union
of the discs in D, there is at least one disc d ∈ D that covers p and whose color is distinct from
all the colors of other discs containing p. This is equivalent to finding the cf-chromatic number of
a certain hypergraph H = H(D) whose vertex set is D and whose hyperedges are defined by the
Venn diagram of D. Below, we give a formal definition for H(D).

Until now, research on cf-coloring was mainly focused on bounds on the cf-chromatic number of
the underlying hypergraphs. In real life, it make sense to assume that each antenna in the wireless
network is further restricted to use a subset of the available spectrum. This restriction might be
local (depending, say, on the physical location of the antenna). Hence, different antennas might
have different subsets of frequencies available for them. Thus, it makes sense to study the list
version of conflict-free coloring. That is, assume further that each antenna d ∈ D is associated with
a subset Ld of frequencies. We want to assign to each antenna d a frequency that is taken from
its allowed set Ld. The following problem thus arises. What is the minimum number f = f(n)
such that given any set D of n antennas (represented as discs) and any family of subsets of integers
L = {Ld}d∈D associated with the antennas in D, the following holds: If each subset Ld is of
cardinality f , then one can cf-color the hypergraph H = H(D) from L. In what follows, we give a
formal definition of the coloring model.

Definition 1.2. Let H = (V, E) be a hypergraph and let L = {Lv}v∈V be a family of |V | subsets of
positive integers. We say that H admits a cf-coloring from L (respectively, a proper coloring from
L) if there exists a cf-coloring (respectively a proper coloring) C : V → N+ such that C(v) ∈ Lv for
every v ∈ V .

Definition 1.3. We say that a hypergraph H = (V, E) is k-cf-choosable (respectively, k-choosable)
if for every family L = {Lv}v∈V such that |Lv| ≥ k ∀v ∈ V , H admits a cf-coloring (respectively a
proper coloring) from L.

In this paper we are interested in the minimum number k for which a given hypergraph is k-cf-
choosable (respectively, k-choosable). We refer to this number as the cf-choice number (respectively
the choice number) of H and denote it by chcf(H) (respectively ch(H)). Obviously, if the cf-choice
number (respectively, the choice number) of H is k then it can be cf-colored (respectively properly
colored) with at most k colors, as one can cf-color (respectively, properly color)H from L = {Lv}v∈V
where for every v we have Lv = {1, . . . , k}. Thus,

ch(H) ≥ χ(H) (1)

and

chcf(H) ≥ χcf(H). (2)

Hence, any lower bound on χcf(H) is also a lower bound on chcf(H).

The study of list coloring for the special case of graphs, i.e., 2-uniform hypergraphs, was initiated
in [17, 33]. List proper coloring of hypergraphs has been studied more recently, as well; see, e.g.,
[22]. We refer the reader to the survey of Alon [3] for more on list coloring of graphs.
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In this paper we initiate the study of cf-choice number of hypergraphs. We provide bounds
on the cf-choice number and also on the choice number of various hypergraphs. We focus mainly
on geometric hypergraphs. Our main result is an asymptotically tight bound of O(log n) on the
cf-choice number of H(D) when D is a family of n unit-discs. We also study the choice number of
several geometric hypergraphs and show that many of the known bounds for the proper coloring
of the underlying hypergraphs hold in the context of list-coloring as well. We also provide an
asymptotically tight upper bound on the cf-choice number of an arbitrary hypergraph in terms of
its cf-chromatic number and the number of its vertices.

Geometric hypergraphs: Let P be a set of n points in the plane and let R be a family of regions
in the plane (such as all discs, all axis-parallel rectangles, etc.). We denote by H = HR(P ) the
hypergraph on the set P whose hyperedges are all subsets P ′ that can be cut off from P by a region
in R. That is, all subsets P ′ such that there exists some region r ∈ R with r ∩ P = P ′. We refer
to such a hypergraph as the hypergraph induced by P with respect to R.

For a finite family R of planar regions, we denote by H(R) the hypergraph whose vertex set is
R and whose hyperedge set is the family {Rp | p ∈ R2} where RP ⊂ R is the subset of all regions
in R that contain p. We refer to such a hypergraph as the hypergraph induced by R. Informally,
this is the Venn-diagram of the family R.

Consider for example the (infinite) family D of all discs in the plane. The following natural
question arises: What is the minimum number f = f(n) such that for any finite set P of n
points we have chcf(HD(P )) ≤ f(n). Similar questions can be asked for other families of geometric
hypergraphs where one is interested in both bounds on the choice-number and the cf-choice number
of such hypergraphs.

In section 2 we provide near-optimal upper bounds on the (non-monochromatic) choice number
of several geometric hypergraphs. In section 3 we focus on a generalization of the so-called discrete
intervals hypergraph. Geometrically, this hypergraph can be described as being induced by a set of
n points in Rr with respect to all axis-parallel strips in Rr, where an axis-parallel strip in Rr is the
region enclosed between two parallel hyperplanes which are also parallel to one of the r axes. We
prove that the cf-choice number of such a hypergraph is at most c(r) log n, where c(r) is a constant
that depends only on the dimension r. We apply this result and combine it with several more
geometric and probabilistic ideas to obtain an asymptotically tight upper bound on the cf-choice
number of a hypergraph induced by points in the plane with respect to the family of all unit-discs.
Our bound on the cf-choice number of hypergraphs induced by points with respect to unit-discs is
detailed in Section 4. Most of our proofs combine geometric and probabilistic ideas. We also provide
a deterministic proof of the weak upper bound chcf(H) = O(

√
n) when H is a hypergraph induced

by n points in the plane with respect to arbitrary discs. Even though, for such a hypergraph H,
we obtain a significantly improved bound on chcf(H) of O(log2 n), later in Section 5, we believe
that the proof of the weak bound is of independent interest. In particular, using similar arguments
we obtain an asymptotically tight bound on the cf-choice number of hypergraphs consisting of the
vertices of a planar graph together with all subsets of vertices that form a simple path (see [11] for
applications of this class of hypergraphs).

Finally, in Section 5 we provide a general bound on the cf-choice number of any hypergraph
in terms of its cf-chromatic number. We show that for any hypergraph H (not necessarily of a
geometric nature) with n vertices we have: chcf(H) ≤ χcf(H) · lnn+1. The proof of this fact uses a
simple probabilistic argument, which is an extension of a probabilistic argument first given in [17].
There, it was proved that the choice-number of every bipartite graph with n vertices is at most
log n+ 1. As a corollary, we obtain the bound chcf(H) = O(log2 n) for any hypergraph H induced
by n points in the plane with respect to arbitrary discs. Table 1 summarizes our results, together
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Hypergraph χ(H) ch(H) χcf(H) chcf(H)

intervals in r permutations on {1, . . . , n} 2r 2r Θ(logn) Θ(logn)

points w.r.t unit discs 4 [29] 5 Θ(logn) [18] Θ(logn)

n regions with linear union complexity O(1) [29] O(1) Θ(logn) [19, 29] O(log2 n)

paths in planar graphs 4 [7, 8] 5 [32] Θ(
√
n) [20, 11] Θ(

√
n)

arbitrary hypergraph — ≤ χ(H) lnn+ 1 — ≤ χcf(H) lnn+ 1

Table 1: Summary of results

with related results from other papers (which are referenced in the table).

2 Choice number of geometric hypergraphs

In this section we provide near-optimal upper bounds on the choice number of several geometric
hypergraphs. We need the following definitions:

Definition 2.1. Let R be a family of n simple Jordan regions in the plane. The union complexity
of R is the number of vertices (i.e., intersection of boundaries of pairs of regions in R) that lie on
the boundary ∂

⋃
r∈R r.

Definition 2.2. Let H = (V, E) be a hypergraph. Let G = (V,E) be the graph whose edges are
all hyperedges of E with cardinality two. We refer to G as the Delaunay graph of H.

Theorem 2.3. (i) Let H be a hypergraph induced by a finite set of points in the plane with respect
to discs. Then ch(H) ≤ 5.

(ii) Let D be a finite family of discs in the plane. Then ch(H(D)) ≤ 5.

(iii) Let R be a set of n regions and let U : N → N be a function such that U(m) is the

maximum complexity of any k regions in R over all k ≤ m, for 1 ≤ m ≤ n. We assume that U(m)
m

is a non-decreasing function. Then, ch(H(R)) = O(U(n)n ).

Proof. (i) Consider the Delaunay graph G = G(P ) on P , where two points p and q form an edge
in G if and only if there exists a disc d such that d∩ P = {p, q}. That is, there exists a disc d that
cuts off p and q from P . The proof of (i) follows easily from the following known facts:

1. Every disc containing at least two points of P must also contain a Delaunay edge {p, q} ∈
E(G). (see, e.g., [18]).

2. G is planar (see, e.g., [15]).

3. Every planar-graph is 5-choosable [32].

(ii) The proof of the second part follows from a reduction to three dimensions from [29] and
Thomassen’s result [32].

(iii) For the third part of the theorem, we need the following lemma from [29]:

Lemma 2.4. [29] Let R be a set of n regions and let U : N → N be a function such that U(m)
is the maximum complexity of any k regions in R over all k ≤ m, for 1 ≤ m ≤ n. Then, the
Delaunay graph G of the hypergraph H = H(R) has a vertex with degree at most cU(n)n where c is
some absolute constant.
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The proof is similar to the proof of [29] of the fact that χ(H(R)) = O(U(n)n ). We prove that

ch(H(R)) ≤ c · U(n)n + 1. Let L = {Lr}r∈R be the sets associated with the regions of R. The

proof is by induction on n. Let r ∈ R be a region with at most c · U(n)n neighbors in G. By the

induction hypothesis, the hypergraph H(R \ {r}) is c · U(n−1)n−1 + 1 ≤ c · U(n)n + 1-choosable (by our

monotonicity assumption on U(n)n ). We need to choose a color (out of the c · U(n)n + 1 colors that
are available for us in the set Lr) for r such that the coloring of R is valid. Obviously, points that
are not covered by r are not affected by the coloring of r. Note also that any point p ∈ r that is
contained in at least two regions of R \ r is not affected by the color of r since, by induction, the
set of regions in R\ {r} containing such points is non-monochromatic. We thus only need to color
r with a color that is different from the colors of all regions r′ ∈ R \ r, for which there is a point p

that is contained only in r∩ r′. However, by our choice of r, there are at most c · U(n)n such regions.

Thus, we can assign to r a color among the c · U(n)n + 1 colors available to us in Lr and keep the
coloring of R proper. This completes the inductive step.

Corollary 2.5. Let P be a family of n pseudo-discs (i.e., a family of simple closed Jordan regions,
such that the boundaries of any two of them intersect at most twice). Then ch(H(P)) = O(1).

The corollary follows immediately from the fact that such a family P has linear union complexity
[21], combined with Theorem 2.3.

3 Permutations hypergraphs

Let [n] = {1, . . . , n}. For s ≤ t, s, t ∈ [n], we define the (discrete) interval [s, t] = {i | s ≤ i ≤ t}.
The discrete interval hypergraph Hn has vertex set [n] and hyperedge set {[s, t] | s ≤ t, s, t ∈ [n]}. It
is not difficult to prove that χcf(Hn) = blog2 nc+1 (see, e.g., [18, 28]). Therefore, from inequality (2),
we have the lower bound chcf(Hn) ≥ blog2 nc+ 1. Hence, the following upper bound is tight:

Proposition 3.1. For every n ≥ 1, chcf(Hn) ≤ blog2 nc+ 1.

Proof. Assume, without loss of generality, that n = 2k + 1. We will show that Hn is k + 1 cf-
choosable. The proof is by induction on k. Let L = {Li}i∈[n], such that |Li| = k + 1, for every

i. Consider the median vertex p = 2k−1 + 1. Choose a color x ∈ Lp and assign it to p. Remove
x from all other lists (for lists containing x), i.e., consider L′ = {L′i}i∈[n]\p where L′i = Li \ {x}.
Note that all lists in L′ have size at least k. The induction hypothesis is that we can cf-color any
set of points of size 2k−1 + 1 from lists of size k. Thus, we cf-color vertices smaller than p and
independently vertices larger than p, both using colors from the lists of L′. However, we need to
argue that intervals that contain the median vertex p also contain some unique color. But this is
obviously true because p itself is colored uniquely (with color x) in such intervals. This completes
the induction step and hence the proof of the proposition.

For a permutation π : [n] → [n], we define the [s, t]-strip as the set π[s,t] = {π(i) | s ≤ i ≤ t}.
Then, the strip hypergraph of π is Hπ = ([n], E(Hπ)), where E(Hπ) = {π[s,t] | s ≤ t, s, t ∈ [n]}. It is
not difficult to see that Hπ is isomorphic to Hn.

We now consider, for r permutations on the same n elements, the union of the corresponding
r strip hypergraphs. Namely, for r permutations on n elements, π1, . . . , πr, we consider the
hypergraph Hπ1,...,πr = ([n], E(Hπ1) ∪ · · · ∪ E(Hπr)). We will prove that chcf(Hπ1,...,πr) ≤ c(r) log n
and this upper bound will be useful when we study the cf-choice number of the hypergraph induced
by points in the plane with respect to unit discs.

5



We note that the bound χcf(Hπ1,...,πr) = O(log n) follows by a general framework of [29] and
the fact that the Delaunay graph G(Hπ1,...,πr) is 2r colorable (see the end of this section).

Remark 3.2. Permutations hypergraphs were studied recently in the context of combinatorial dis-
crepancy as well (see, e.g., [10, 30]) and a major problem of determining the discrepancy of such
hypergraphs is still widely open.

The notion of induced subhypergraph will be needed, so we define it here: Given a hypergraph
H = (V, E) and a subset V ′ ⊂ V , put H[V ′] = (V ′, {e ∩ V ′ | e ∈ E , e ∩ V ′ 6= ∅}). We refer to H[V ′]
as the subhypergraph of H induced by V ′.

Theorem 3.3. There exists a constant c = c(r) such that for any r permutations π1, . . . , πr : [n]→
[n], chcf(Hπ1,...,πr) ≤ c log n.

Proof. Put H = Hπ1,...,πr .

By a recent result of Aloupis et al. [6], there is a coloring C∗ : [n] → [r] of H such that every
hyperedge e of H, with cardinality at least qr = 5r ln r, is colorful. That is, for every i ∈ [r],
there exists a vertex v ∈ e with C∗(v) = i. In [6], such a coloring is referred to as a polychromatic
coloring, and can be computed efficiently.

We construct the following graph G on V = [n]: add an edge xy to E(G) if {x, y} ⊂ e for
some hyperedge e ∈ E(H) with |e| < qr. The hyperedges E(Hπi) of each permutation πi, for a
fixed v ∈ V contribute at most 2(qr − 1) neighbors to v in G. Thus, the maximum degree ∆ of G
is bounded by 2(qr − 1)r, and thus G can be greedily colored with at most 2(qr − 1)r + 1 colors.
Denote such a coloring by CG.

We assign the following ‘type’ to each v ∈ V : T (v) = (C∗(v), CG(v)). The number K of distinct
types is bounded by (2(qr − 1)r + 1)r.

Consider a family L = {Lv}v∈V , such that for every v, |Lv| = c lnn, where c is a constant to be
determined later, depending only on r. We wish to find a family L′ = {L′v}v∈V with the following
properties:

1. ∀v ∈ V , L′v ⊂ Lv.

2. ∀v ∈ V , |L′v| ≥ 1 + log2 n.

3. For v, u ∈ V , if T (v) 6= T (u), then L′v ∩ L′u = ∅.

We claim that, if such a family L′ exists, then there exists a cf-coloring of H from L′: For every
i ∈ [r], consider the vertices colored with color i in the colorful coloring C∗, i.e., V i = C−1∗ (i). It is
not difficult to see that for any permutation π : [n] → [n] and for any S ⊂ [n], the subhypergraph
induced by S, Hπ[S], is isomorphic to the discrete interval hypergraph H|S|. Thus, the hypergraph
Hπi [V i] is a discrete interval hypergraph with at most n vertices, and by proposition 3.1 we can
cf-color it from lists of size 1 + blog2 nc. We apply this coloring process for each of Hπi [V i], for
i ∈ [r]. Next, we prove that this is, indeed, a cf-coloring of the hypergraph H: Consider a hyperedge
e ∈ E(Hπi). If e∩ V i 6= ∅, then e∩ V i is a discrete interval in Hπi [V i] and thus it contains a vertex
v with unique color among vertices of e ∩ V i. Since the type of no vertex in e ∩ V i is the same as
the type of a vertex in e \V i, the color of vertex v is uniquely occurring in e. If e∩V i = ∅, then by
the property of C∗, |e| < qr and, therefore, every pair of vertices in e have distinct types. Hence, by
property 3 of the family L′ the lists of {L′v}v∈e are pair-wise disjoint and thus e has the cf property
(in fact it has the stronger “rainbow” property, i.e., every v ∈ e gets a uniquely occurring color in
e).
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Thus, it is left to prove that such a family L′ do exists. The proof is probabilistic. For each
element in ∪L, assign it uniformly at random to one of the K distinct types. For every v ∈ V , keep
a color i of Lv in the updated list L′v if and only if i was assigned to type T (v). Properties 1 and
3 are trivially satisfied by L′.

For a fixed v ∈ V , let Xv denote the number of colors in the list Lv that are assigned the type
T (v), and thus belong to the list L′v. Xv is a binomial random-variable with success probability
p = 1/K and expectation µ = p|Lv|. By the Chernoff bound (see, e.g., [5]) we have:

Pr[Xv < (1− δ)µ] < exp(−µδ2/2)

Choosing δ so that (1 − δ)µ = 2 lnn/ ln 2 = 2 log2 n ≥ 1 + blog2 nc (for n > 1), we get that the
probability of the “bad” event that the vertex v will not have a sufficient number of colors in L′v is

Pr[Xv < 1 + blog2 nc] < exp(−(c lnn)(1− (2K/(c ln 2)))2/2).

By the union bound, the probability that at least one of the n vertices does not have sufficient
many colors in its list is at most

n exp(−(c lnn)(1− (2K/(c ln 2)))2) = n1−c(1−(2K/(c ln 2)))2/2,

which is less than 1 for c ≥ 2K(1 + 2/ ln 2) and n > 1. Therefore, property 2 is also satisfied with a
positive probability. Hence, such a family L′ exists. This completes the proof of the theorem.

We also give tight bounds of 2r for the (non-monochromatic) chromatic and choice number of
a hypergraph of r permutations.

Proposition 3.4. For any r permutations π1, . . . , πr : [n]→ [n], ch(Hπ1,...,πr) ≤ 2r.

Proof. Set H = Hπ1,...,πr and assume that for every v ∈ [n], |Lv| = 2r. For each permutation πi,

define the path P π
i

on n vertices with edge set

E(P π
i
) = {{πij , πij+1} | 1 ≤ j < n}.

It is not difficult to see that the Delaunay graph G(H) is the union of the r paths P π
1
, . . . , P π

r
.

Moreover, a (proper) coloring of G(H) is also a non-monochromatic coloring of H. Consider the
vertices of G(H) in the order of one of the permutations, say π1. We color G(H) as follows:
Iteratively, following the above order, we color each vertex v greedily with the smallest color in
Lv which is not used by any of the already colored neighbors of v. At the end, the above method
produces a proper coloring of G(H) as long as there is an available color for every vertex. Vertex
v has at most one already colored vertex neighboring on path P π

1
and at most 2(r − 1) vertices

neighboring on the other r − 1 paths, i.e., a total of at most 2r − 1 already colored neighbors.
Therefore, since |Lv| = 2r, the above method colors all vertices.

The above result is tight for both the chromatic and choice number, because of inequality (1)
and the following proposition:

Proposition 3.5. For every r, there exist permutations π1, . . . , πr, such that χ(Hπ1,...,πr) ≥ 2r.

Proof. It is known from [31] that the edges of K2r can be covered by r pairwise edge-disjoint
Hamiltonian paths, P 1, . . . , P r. If V (K2r) = [2r] then each path P i can be seen as a permutation
πi : [2r] → [2r]. Consider the hypergraph H = Hπ1,...,πr . A non-monochromatic coloring of H is
also a coloring of its Delaunay graph G(H), i.e., χ(H) ≥ χ(G(H)). But G(H) = K2r and thus
χ(H) ≥ 2r.
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4 CF-choice number of Geometric Hypergraphs

In this section we provide upper bounds on the cf-choice number of hypergraphs induced by a finite
set of points in the plane with respect to ranges such as half-planes, unit-discs and arbitrary discs.

We start with the case of a hypergraph H induced by n points in the plane with respect to
half-planes. If the points of P are in convex position, we face a case which is almost identical to
the discrete interval hypergraph (see proposition 3.1). We only need to modify the first stage of
the recursion where we take two antipodal points along their order on the convex hull and break
the problem into two sub-problems of size n−2

2 . Thus, if the lists attached to the points are of size
at least log n + 2 then we can find a cf-coloring from the lists. A difficulty arises when there are
many interior points, for example, when n/2 points lie on the boundary of CH(P ) and n/2 points
lie in the interior of CH(P ). In the standard cf-coloring (without lists) we could simply assign to
all of the interior points one color and never use it again. However, in our case, we must assign
the colors from the corresponding lists. Those lists might be pairwise disjoint which means that
we assigned n/2 distinct colors to the interior points. If we want the property that those colors are
never used for the extreme points, it might be the case that we need to remove, from each of the
lists of the extreme points, n/2 colors. Then the lists should be of size at least n/2. To overcome
this difficulty, we apply again the probabilistic method.

Theorem 4.1. Let P be a set of n points in the plane. Let H = H(P ) be the hypergraph induced
by P with respect to all half-planes. Then chcf(H) ≤ c log n.

Proof. Let L = {Lp}p∈P be a family of n lists attached to points of P . Assume that all lists in L
have cardinality at least c log n, where c is some absolute constant to be determined later. We need
to show that P admits a cf-coloring from L. Let P1 be the extreme points of P (i.e., the points
that belong to the boundary of the convex-hull CH(P )). Let P2 = P \ P1 be the interior points of
CH(P ). Next, we modify the lists of L by taking for each point p a subset L′p ⊂ Lp, obtaining a
family of lists L′ with the following properties:

1. |L′p| ≥ 1 ∀p ∈ P2. Namely, sub-lists taken for P2 are non-empty.

2. |L′p| ≥ log n+ 2 ∀p ∈ P1. Namely, the lists taken for the extreme points are “large enough”.

3. For every pair p, q such that p ∈ P1, q ∈ P2, we have L′p∩L′q = ∅. That is, every color x left in
any list of the interior points, does not belong to any of the lists left for the extreme points.

As before. we do this modification randomly. Let S =
⋃
p∈P Lp. Independently for every color

x ∈ S we do the following random choice: With probability 1
2 we erase x from all lists of points in

P1 and with probability 1
2 we erase it from all lists of points in P2. For every p ∈ P , let L′p denote

the list obtained from Lp after the above random procedure. For p ∈ P1, let Ap denote the “bad”
event that |L′p| < log n+ 2 and for p ∈ P2, let Bp denote the “bad” event that L′p = ∅. We need to

show that Pr
[
(
⋃
p∈P1

Ap) ∪ (
⋃
p∈P2

Bp)
]
< 1. Note that for every p ∈ P2, Pr[Bp] ≤ 2−c logn = n−c

since every list Lp is of size at least c log n and the probability of a color x ∈ Lp to be removed is
exactly 1

2 . Note also that for every p ∈ P1 we have:

E
[
|L′p|

]
=

1

2
|Lp| ≥

1

2
c log n,

since every color in Lp is removed with probability 1
2 . We need the following version of the Chernoff

inequality (see, e.g., [5]) for a binomial random variable X with k elements and success probability
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1
2 :

Pr[X < µ− a] ≤ e−
2a2

k

where µ = E[X] = k
2 and for any a with 0 < a < µ.

Put µ = E
[
|L′p|

]
and a = µ− (log n+ 2). Note that a ≥ c

2 log n− log n− 2 = c−2
2 log n− 2. We

thus have:

Pr[Ap] = Pr
[
|L′p| < log n+ 2

]
≤ Pr

[
|L′p| < µ− a

]
≤ e−

2a2

|Lp| ≤ e−
2( c−2

2 logn−2)2

c logn � 1

For any constant c which is sufficiently large. We use the union bound in order to obtain:

Pr

(
⋃
p∈P1

Ap) ∪ (
⋃
p∈P2

Bp)

 < |P1|e−
2( c−2

2 logn−2)2

c logn + |P2|n−c < 1

By our choice of c. It is easy to see that for c ≥ 10 the above inequality holds. Here, we do
not attempt to optimize the constant c. Thus, there exists a family L′ such that none of the bad
events occur and hence properties 1 and 2 above are satisfied. Note that, by construction, property
3 is trivially satisfied. We choose an arbitrary color x ∈ L′p for every point p ∈ P2 and we cf-
color the points of P1 from the lists {L′p}p∈P1 in the same way as in the one dimensional case (see
proposition 3.1). This can be done since the lists {L′p}p∈P1 all have cardinality large enough. Note
that this coloring is indeed a valid cf-coloring since for every half-plane h with h ∩ P 6= ∅ we also
have h ∩ P1 6= ∅ so there is at least one point p whose color c(p) ∈ L′p is unique in h ∩ P1 and for
every color x′ used for points in h∩ P2 we must have x′ 6= c(p). Thus, c(p) is also unique in h∩ P .
This completes the proof of the theorem.

Extending the ideas used in the previous proofs and combining it with a geometric partition
and Theorem 3.3, we obtain the main result of our paper:

Theorem 4.2. Let P be a set of n points in the plane and let H = H(P ) denote the hypergraph
induced by P with respect to unit-discs. Then chcf(H) = O(log n).

Proof. Let V = P be a set of n points in the plane and consider the family of disks of radius 1 (i.e.,
unit discs) in the plane. Suppose we are given a family L = {Lv}v∈V such that for every v ∈ V ,
|Lv| ≥ c lnn, where c is a constant to be determined later.

Consider a regular tiling of the plane with squares of side 1/2, such that no point in V intersects
with the boundaries of the squares. It is a well known fact that we can partition the squares into a
constant number of classes K so that no unit disk contains points in V belonging to two different
squares in the same class. Assign to each point v ∈ V the class of the square that contains it.

We would like to compute a family L′ = {L′v}v∈V with the following properties:

1. For every v ∈ V , L′v ⊂ Lv.

2. For every v ∈ V , |L′v| ≥ c′ lnn.

3. If v, u belong to different classes, then L′v ∩ L′u = ∅.

The value of the constant c′ will be determined later as well. This family L′ can be constructed
randomly in a way which is similar to the one used in the proof of Theorem 3.3. We omit the
details.
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K1

Figure 1: taken from [13]: Squares g, g1, g2, g3, g4

Obtaining such a family L′ as above, we claim that we can now concentrate in conflict-free
coloring points in each square of the grid independently, in order to get a conflict-free coloring of
the whole point set V with respect to unit discs.

Hence, it is enough to focus on a fixed cell g of the square tiling. Let D denote the family of
unit discs having non-empty intersection with the square g. Next, we partition D into four classes;
this partition idea is taken from [13] where it was used for an algorithmic online cf-coloring problem
of points in the plane with respect to unit-discs. Consider the square g0 which is concentric with
g, has sides parallel to the sides of g, and has side length 5/2. Partition g0 into four squares g1, g2,
g3, g4, each of side length 5/4, that have sides parallel to the sides of g and share the center of g
as a common point. Let o1, o2, o3, o4 be the centers of g1, g2, g3, g4, respectively. See Figure 1 for
an illustration. It is not difficult to see that the center of a unit disk in D lies in g0 and, therefore,
it belongs to at least one of the squares g1, g2, g3, g4. Next, we partition D into four sub-families
D1, D2, D3, D4. For every d ∈ D, pick one of the squares that contains its center, say gi, and put
d in Di. The following lemma is proved in [13]:

Lemma 4.3 ([13]). Let Ki denote the convex cone with apex oi spanned by g, for i = 1, . . . , 4.
Then, for any pair of discs d, d′ ∈ Di, the intersection ∂d∩ ∂d′ ∩Ki consists of at most one point.

In particular, since g ⊂ Ki, for i = 1, . . . , 4, the boundaries of the unit discs belonging to the
same class Di behave like pseudolines inside g.

We set Vg = g∩V . We call a point v ∈ Vg i-extreme if there exists a unit disk d ∈ Di such that
d∩Vg = {v}. It is not difficult to prove that for every unit disk d ∈ Di such that d∩Vg 6= ∅, d∩Vg
must also contain an i-extreme point. We assign the following type to every v ∈ Vg:

T (v) = {i | v is i-extreme}.

Obviously, there are 24 = 16 possible types, as many as the subsets of {1, 2, 3, 4}.
We now further restrict the lists in L′ of points in Vg to obtain a family L′′ = {L′′v}v∈Vg with

the following properties:

1. For every v ∈ Vg, L′′v ⊂ L′v.
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2. For every v ∈ Vg, |L′′v | ≥ c′′ lnn.

3. If T (v) 6= T (u), then L′′v ∩ L′′u = ∅.

The value of the constant c′′ will be determined later. Again, the construction of this family L′′ is
random and is similar to the ones mentioned above.

For any i ∈ {1, . . . , 4}, consider the set V i ⊂ Vg of i-extreme points. We remark that V 1, V 2,
V 3, V 4 is not necessarily a partition of the extreme points, since, for example, a point may be, say,
1-extreme as well as 2-extreme. We will prove that the following hypergraph is a sub-hypergraph
of a discrete interval hypergraph: H i = (V i, E(H i)), where

E(H i) = {d ∩ V i | d ∈ Di, d ∩ V i 6= ∅}.

Indeed, for every point v ∈ V i consider the slope θ = θv of the line oiv, which is between the
slopes of the two halflines bounding the cone Ki. There can be no two different points v, v′ ∈ V i

with θv = θv′ , because if v is, say, inside the segment oiv′, then every disk in Di that contains v′

also contains v, a contradiction to v′ being extremal for some disk in Di. Therefore, vertices in V i

can be put in order of increasing slope; call this order vi1, v
i
2, . . . , vi|V i|. Moreover, the boundary

∂d of a disk d ∈ Di in Ki is a θ-monotone curve in the polar coordinates system with center oi,
because d is convex and contains the center of polar coordinates oi.

We will prove that for d ∈ Di, d ∩ V i = {vix | s ≤ x ≤ t}, for some s, t ∈ [|V i|] with s ≤ t.
Assume, to the contrary, that there is a disk d ∈ Di containing vij and vil , but not vik for j < k < l.

Then ∂d is above vij and vil and below vik (with respect to oi). But, since vik is an extreme point for

some disk d′ ∈ Di, ∂d′ is below vij and vil and above vik. But this implies that ∂d and ∂d′ intersect
at two points, which is a contradiction.

Since for each i ∈ {1, . . . , 4}, V i ⊂ Vg, each hypergraph H i is a subhypergraph of a discrete
interval hypergraph on Vg. Therefore, by theorem 3.3, the hypergraph

H = (Vg, E(H1) ∪ E(H2) ∪ E(H3) ∪ E(H4))

can be cf-colored from lists of size c(4) ln|Vg|. If c′′ ≥ c(4), then c′′ lnn ≥ c(4) ln|Vg| and the
hypergraph H admits a cf-coloring from the family L′′; call this coloring C.

We will prove that C is also a conflict-free coloring of the points in Vg with respect to unit discs.
Indeed, consider any disk d with d ∩ Vg 6= ∅. For some i ∈ {1, 2, 3, 4}, we have d ∈ Di. Consider
the set of i-extreme points in d, i.e., d ∩ V i, and the set of non-i-extreme points in d. The set of
i-extreme points in d is non-empty because d ∈ Di. Moreover, d ∩ V i ∈ E(H i) and thus there is
a vertex v ∈ d ∩ V i with uniquely occurring color among i-extreme points of d. The color C(v)
does not occur in any non-i-extreme point u of d, because T (v) 6= T (u) and thus L′′v ∩ L′′u = ∅.
Therefore, the color C(v) occurs uniquely among all points in d ∩ Vg. This completes the proof of
the theorem.

We next turn our attention to a more difficult task of obtaining good asymptotic upper bounds
on the cf-choice number of hypergraphs induced by n points in the plane with respect to arbitrary
size discs. Recall that f = f(n) denotes the minimum number such that for any planar set P of n
points we have chcf(H(P )) ≤ f(n).

We obtain the following weak upper bound on f(n).

Theorem 4.4. f(n) = O(
√
n).
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Later, in Section 5 we show an improved upper bound of O(log2 n). Nevertheless, in contrast
with our previous proofs that rely on probabilistic arguments, we employ a fully deterministic
method to do the coloring. We use the proof technique to show an asymptotically tight upper
bound on the cf-choice number of a hypergraph whose vertices are the vertices of some planar
graph and whose hyperedges are all subsets of vertices that form a simple path in the graph.

Before proceeding to the proof, we need the following geometric lemma. We feel that this lemma
is of independent interest.

Lemma 4.5. Let P be a set of n points in the plane. Then there exists a partition P = R ∪B ∪ S
of P into pairwise disjoint sets such that:

1. |R| ≤ 2
3n, |B| ≤ 2

3n, |S| ≤
√

6
√
n

2. For every disc d with d ∩R 6= ∅ and d ∩B 6= ∅ we also have d ∩ S 6= ∅

Proof. We assume without loss of generality that the set P is in general position in the sense that
no three points are co-linear and no four points are co-circular. If P is not in general position, then
we can slightly perturb the points in P and obtain a set P ′ in general position such that every
subset in P that can be cut-off by some disc d corresponds to some subset of P ′ that can be cut-off
by some disc. In other words, in P ′ the family of “relevant” subsets (i.e., hyperedges realized by
discs) contains the family of hyperedges for P . Any partition of P ′ with the properties required in
the lemma also serves as a valid partition of P .

Consider the Delaunay graph G = G(P ) on P where two points p and q form an edge in G if
and only if there exists a disc d such that d∩P = {p, q}. That is, there exists a disc d that cuts off
p and q from P . It is a well known fact that G is planar; see, e.g., [15]. Hence, by the Lipton-Tarjan
separator theorem [24] and in particular by the version of the separator theorem from [16], there
exists a partition P = R ∪ B ∪ S such that |R|, |B| ≤ 2

3n and |S| ≤
√

6n and such that there is
no edge connecting a point in R with a point in B. In what follows we refer to the set B as the
set of ‘blue’ points and the set R as the set of ‘red’ points. We claim that such a partition has
the properties required by the lemma. Assume to the contrary that there is a disc d such that
d ∩ R 6= ∅, d ∩ B 6= ∅ and d ∩ S = ∅. We will show that such a disc must contain a ‘red-blue’
Delaunay edge. That is an edge pq ∈ E(G) with p ∈ R and q ∈ B, contradicting the separation
property of S. Let c denote the center of d. We shrink d about c until the “first” time we obtain a
disc d′ with a point from P on its boundary. Denote this point by p. Consider the pencil of discs
{dx} with center x lying on the line-segment cp and radius |xp|. As x moves from c towards p the
discs dx shrinks and p remains a boundary point of all such discs. See Figure 2 for an illustration.
Assume without loss of generality that p ∈ R, namely that p is a red point. As we move x from c
towards p, let q be the last blue point we meet on the boundary of some disc dx. Obviously, the
interior of dx does not contain any blue point but might contain many red points. If dx contains
no points in its interior, then either (a) p and q are the only points on the boundary of dx, we
are done as pq is a red-blue Delaunay edge, a contradiction, or (b) there is a third point r on the
boundary of dx (remember that points are in general position, i.e., no four points are co-circular);
but then, we can consider a disc passing through the following three points p, q, and a point r′

very close to r on the segment xr, so that this disc contains only p and q from P , which implies
the red-blue Delaunay edge pq, a contradiction. Now, suppose the interior of dx contains some red
point. In this case, we look at a pencil of discs {dy} with center y lying on the line segment xq. As
we move y from x to q, dy shrinks but always contains q on its boundary. Thus, there exists a y
such that the disc dy contains some point p′ ∈ P on its boundary and no other points of P in its
interior. At this stage the disc dy contains at least one red point (namely, p′) and at least one blue
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point (namely, q) on its boundary and no points of P in its interior. To finish the argument we
need to show that there is a disc d containing only one blue boundary point and one red boundary
point of dy. Assume there is a third point r on the boundary of the disc dy (there can be no more
points, because points are in general position, i.e., no four points are co-circular); then, as before,
we can consider a disc passing through p′, q and a point r′ very close to r on the segment yr, so
that this disc contains only p′ and q from P . Thus, in any case, there is a red-blue Delaunay edge,
a contradiction. This completes the proof of the lemma.

x

dx

c

p

q

p′

Figure 2: An illustration of the shrinking argument.

Proof of theorem 4.4. The proof uses a ‘separator-tree’ structure and is algorithmic. That is, given
a planar set P of size n together with a family L of sets of size c

√
n where c is some absolute

constant to be revealed later, we produce a cf-coloring C for P (with respect to discs) with colors
from L. That is, C(p) ∈ Lp where Lp ∈ L is the set associated with p.

The algorithm is recursive. We find a partition of P = R∪B∪S, as in Lemma 4.5. We color all
points in S with distinct colors. This can be done greedily as follows: Arbitrarily order the points
in S and for each point p along this order choose a color from Lp to assign to p which is distinct
from all colors assigned to previous points. This is possible if |Lp| = c

√
n ≥

√
6n ≥ |S|. Next,

for each point q ∈ R ∪ B modify the lists {Lq}q∈R∪B by erasing all colors used for S, namely put
L′ = { Lq \ {C(p) | p ∈ S}}q∈R∪B. We recursively color B and R from L′. Note that the colors
assigned to points in R ∪ B are distinct from all colors used for S. Note also that if this coloring
is indeed a valid cf-coloring of P from L then the function f(n) which is the minimum cf-choice
number for n points in the plane satisfies the following recursive inequality:

f(n) ≤
√

6
√
n+ f(2n/3) ≤

∞∑
i=0

√
6 ·
(

2

3

)i
n =

√
6
√
n

1−
√

2/3
≈ 13.3485

√
n

Thus, we have f(n) ≤ c
√
n, for c ≈ 13.3485, as claimed.

In the next section, we improve on the O(
√
n) bound of theorem 4.4, albeit using a probabilistic

approach.
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Given a simple graph G = (V,E), consider the hypergraph

HG = (V, {S | S is the vertex set of a simple path in G}).

The proof of the following theorem is similar to the proof of theorem 4.4.

Theorem 4.6. Let G be a planar graph with n vertices. Then chcf(HG) = O(
√
n).

Remark 4.7. The upper boundO(
√
n) is asymptotically tight, since for the

√
n×
√
n grid graphG√n,

it was proved in [11] that χcf(HG√n
) = Ω(

√
n) and thus, from inequality (2), also chcf(HG√n

) =

Ω(
√
n).

5 A connection between choosability and colorability in general
hypergraphs

In this section we prove the following theorem.

Theorem 5.1. For every hypergraph H, chcf(H) ≤ χcf(H) · lnn+ 1.

Proof. If k = χcf(H), there is a cf-coloring C of H with colors {1, . . . , k}, which induces a partition
of V into k classes: V1 ∪ V2 ∪ · · · ∪ Vk. Consider a family L = {Lv}v∈V , such that for every v,
|Lv| = k∗ > k · lnn. We wish to find a family L′ = {L′v}v∈V with the following properties:

1. For every v ∈ V , L′v ⊂ Lv.

2. For every v ∈ V , L′v 6= ∅.

3. For every i 6= j, if v ∈ Vi and u ∈ Vj , then L′v ∩ L′u = ∅.

Obviously, if such a family L′ exists, then there exists a cf-coloring from L′: For each v ∈ V , pick
a color x ∈ L′v and assign it to v.

Once again, the family L′ is created randomly as follows: For each element in ∪L, assign it
uniformly at random to one of the k classes of the partition V1 ∪ · · · ∪ Vk. For every vertex v ∈ V ,
say with v ∈ Vi, we create L′v, by keeping only elements of Lv that were assigned through the above
random process to v’s class, Vi.

The family L′ has properties 1 and 3. We will prove that with positive probability it also has
property 2.

For a fixed v, the probability that L′v = ∅ is at most(
1− 1

k

)k∗
≤ e−k∗/k < e− lnn =

1

n

and therefore, using the union bound, the probability that for at least one vertex v, L′v = ∅, is at
most

n

(
1− 1

k

)k∗
< 1.

Thus, there is at least one family L′ where property 2 also holds, as claimed.

Corollary 5.2. For a hypergraph H of n points with respect to arbitrary discs, chcf(H) = O(log2 n).
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Proof. Immediate from the fact that χcf(H) = O(log n) (see [18]) and Theorem 5.1.

Remark 5.3. Observe that in the proof of theorem 5.1 we used the property of cf-coloring in a
very “weak” sense. Our proof in fact says that any ‘good’ (non-list) coloring induces a ‘good’
list-coloring (with logarithmic times more colors). The argument in the proof of theorem 5.1 is a
generalization of an argument first given in [17], to prove that any bipartite graph with n vertices
is O(log n)-choosable (see also [2]). In particular, we also have:

Theorem 5.4. For every hypergraph H, ch(H) ≤ χ(H) · lnn+ 1.

6 Open problems

We consider the following as interesting problems left open here:

• Let H be a hypergraph induced by n points in the plane with respect to discs. Close the gap
between the lower bound of Ω(log n) and the upper bound of O(log2 n) on chcf(H).

• Let H be a hypergraph induced by n axis-parallel rectangles in the plane. Is it true that
ch(H) = O(log n)? It is known that χ(H) = Θ(log n) [25, 29].
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