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Abstract. In the Hausdorff Voronoi diagram of a set of point-clusters
in the plane, the distance between a point t and a cluster P is mea-
sured as the maximum distance between t and any point in P while
the diagram is defined in a nearest sense. This diagram finds direct ap-
plications in VLSI computer-aided design. In this paper, we consider
“non-crossing” clusters, for which the combinatorial complexity of the
diagram is linear in the total number n of points on the convex hulls of
all clusters. We present a randomized incremental construction, based on
point-location, to compute the diagram in expected O(n log2 n) time and
expected O(n) space, which considerably improves previous results. Our
technique efficiently handles non-standard characteristics of generalized
Voronoi diagrams, such as sites of non-constant complexity, sites that
are not enclosed in their Voronoi regions, and empty Voronoi regions.

1 Introduction

Given a set S of sites contained in some space, the Voronoi region of a site s ∈ S
is the geometric locus of points in the given space that are closer to s than to
any other site. In the classic Voronoi diagram, each site is a point and closeness
is measured according to the Euclidean distance. In this work, we consider the
Hausdorff Voronoi diagram. The containing space is R2, each site is a cluster of
points (i.e., a set of points), and closeness of a point t ∈ R2 to a cluster P is
measured by the farthest distance df(t, P ) = maxp∈P d(t, p), where d(·, ·) is the
Euclidean distance between two points. The farthest distance df(t, P ) equals the
Hausdorff distance between t and cluster P , hence the name of the diagram.

Our motivation for investigating the Hausdorff Voronoi diagram comes from
VLSI circuit design, where this diagram can be used to efficiently estimate the
critical area of a VLSI layout for various types of open faults [20,21].

1.1 Previous Work

Let k be the number of clusters in the input family, and n be the total number
of points on the convex hulls of all clusters. We denote by convP the convex
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hull of cluster P and by CH(P ) the sequence of points of P on the boundary of
the convex hull in counterclockwise order.

Definition 1. Two clusters P and Q are called non-crossing if the convex hull
of P ∪ Q admits at most two supporting segments with one endpoint in P and
one endpoint in Q, or equivalently convex hulls of P and Q are pseudodisks. See
Fig. 1.

Fig. 1: Non-crossing and crossing
clusters with supporting segments
(dashed lines)

c1

c2

Fig. 2: HVD of five 2-point clusters;
region of C = {c1, c2} (gray)

The combinatorial complexity (size) of the Hausdorff Voronoi diagram is
O(n + m), where m is the number of supporting segments reflecting crossings
between all pairs of crossing clusters, and this is tight [22]. In the worst case, m is
Θ(n2). If all clusters are non-crossing (m = 0) the diagram has linear size. There
are plane sweep [20] and divide and conquer [22] algorithms for constructing the
Hausdorff Voronoi diagram of arbitrary clusters. Both algorithms have a K log n
term in their time complexity, where K is a parameter reflecting the number of
pairs of clusters such that one is contained in a specially defined enclosing circle
of the other, for example, the minimum enclosing circle [22]. However, K can
be ω(n) (superlinear) even in the case of non-crossing clusters. The Hausdorff
Voronoi diagram is equivalent to an upper envelope of a family of lower envelopes
of an arrangement of hyperplanes in (each envelope corresponds to a cluster) [13].
Edelsbrunner et al. give a construction algorithm of O(n2) time complexity.3

Although the time complexity is optimal in the worst case, it remains quadratic
even for non-crossing clusters, for which the size of the diagram is linear. A
more recent parallel algorithm [10] constructs the Hausdorff Voronoi diagram
of non-crossing clusters in O(p−1n log4 n) time with p processors, which implies
a divide and conquer sequential algorithm of time complexity O(n log4 n) and
space complexity O(n log2 n).

The Hausdorff Voronoi diagram of a family of non-crossing clusters is an
instance of abstract Voronoi diagrams [16]. Using the randomized incremental
framework of Klein et al. [17], it can be computed in expected O(bn log n) time,
where b is the time it takes to construct the bisector between two clusters [1].
If there are clusters of linear size, then b can be Θ(n). The framework was
successfully applied to compute the Voronoi diagram of disjoint polygons [18]

3The reported O(n2α(n)) time complexity (where α(n) is the inverse Ackermann
function) improves to O(n2) due to the O(n2) bound on the size of the diagram.
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in O(k log n) time, where k is the number of the sites, and n is their total size.
It is not easy, however, to apply a similar approach to the Hausdorff Voronoi
diagram because of a fundamental difference between the farthest and the nearest
distance from a point to a convex polygon [12].

The Hausdorff Voronoi diagram is a min-max diagram type of diagram, where
every point t in the plane lies in the region of the closest cluster with respect to
the farthest distance. The “dual” max-min diagram is the farthest color Voronoi
diagram [2,14]. For disjoint simple polygons, the farthest color Voronoi diagram
can be constructed in O(n log3 n) time where n is the total size of the sites [8].

1.2 Our Contribution

In this paper we give a randomized incremental algorithm to compute the Haus-
dorff Voronoi diagram of a family of k non-crossing clusters, based on point
location. Clusters are inserted in random order one by one, while the diagram
computed so far is maintained in a dynamic data structure, where generalized
point location queries can be answered efficiently. To insert a cluster, a represen-
tative point in the new Voronoi region of this cluster is first identified and located,
and then the new region is traced while the data structure is updated [6,11,15].

In case of the Hausdorff Voronoi diagram, a major technical challenge is to
quickly identify a representative point that lies in the new Voronoi region. This
is difficult because: (a) the region of the new cluster might not contain any of its
points, (b) the region of the new cluster might be empty, and (c) sites have non-
constant size and thus the computation of a bisector or answering an in-circle
test require non-constant time. Furthermore, the addition of a new cluster may
make an existing region empty.

The dynamic data structure that we use is a variant of the Voronoi hierar-
chy [15], which in turn is inspired by the Delaunay hierarchy [11], and which
we augment with the ability to efficiently handle the difficulties (a) to (c). We
also exploit a technique by Aronov et al. [4] to efficiently query the static far-
thest Voronoi diagram of a cluster. The expected running time of our algorithm
is O(n log n log k) and the expected space complexity is O(n). The augmenta-
tion of the Voronoi hierarchy introduced in this paper may be of interest for
incremental constructions of other non-standard types of generalized Voronoi
diagrams. Our algorithm can also be implemented in deterministic O(n) space
and O(n log2 n(log log n)2) expected running time, using the dynamic point lo-
cation data structure by Baumgarten et al. [5], while applying a simplified type
of parametric search similarly to Cheong et al. [8].

Due to the lack of space some proofs and technical details are omitted in this
version of the paper. Please refer to the online full version [7].

2 Preliminaries

Throughout this paper, we consider a family F = {C1, . . . , Ck} of non-crossing
clusters of points. We assume that no two clusters have a common point, and
no four points lie on the same circle.
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For a point c ∈ C, the farthest Voronoi region of c is fregC(c) = {p | ∀c′ ∈
C \ {c} : d(p, c) > d(p, c′)}. The farthest Voronoi diagram of C is denoted as
FVD(C) and its graph structure as T (C). If |C| > 1, T (C) is a tree defined
as R2 \ ⋃c∈C fregC(c), and T (C) = c, if C = {c}. A point at infinity along an
arbitrary unbounded edge of T (C) is treated as the root of T (C), denoted as
root(C).

For a cluster C ∈ F , the Hausdorff Voronoi region of C is

hregF (C) = {p | ∀C ′ ∈ F \ {C} : df(p, C) < df(p, C
′)}.

For a point c ∈ C, hregF (c) = hregF (C) ∩ fregC(c). The closure of fregC(c),
hregF (C), and hregF (c) is denoted by fregC(c), hregF (C), and hregF (c), respec-
tively. When there is no ambiguity on the set under consideration, we omit the
subscript from the above notation. The partitioning of the plane into non-empty
Hausdorff Voronoi regions, together with their bounding edges and vertices, is
called the Hausdorff Voronoi diagram of F , and it is denoted as HVD(F ). Be-
low we review some useful definitions and properties of the Hausdorff Voronoi
diagram, which appeared in previous work [22].

The Hausdorff Voronoi diagram is monotone, that is, a region of the diagram
can only shrink with the insertion of a new cluster. The structure of the Hausdorff
Voronoi region of a point c ∈ C is shown in Fig. 3. Its boundary consists of two
chains: (1) the farthest boundary that belongs to T (C) and is internal to hreg(C),
(bd hreg(c) ∩ bd freg(c)); (2) the Hausdorff boundary (bd hreg(c) ∩ bd hreg(C)).
Neither chain can be empty, if hreg(C) 6= ∅ and |C| > 1. There are three types
of vertices on the boundary of hreg(c): (1) Standard Voronoi vertices that are
equidistant from C and two other clusters, referred in this paper as pure vertices.
Pure vertices appear on the Hausdorff boundary of hreg(c). (2) Mixed vertices
that are equidistant to three points of two clusters (C and another cluster).
The mixed vertices which are equidistant to two points of C and one point of
another cluster are called C-mixed vertices; there are exactly two of them on the
boundary of hreg(c) and they delimit both the farthest boundary of c and the
Hausdorff boundary of c. (3) Vertices of T (C) on the farthest boundary of c.

c

pure vertex
C-mixed vertex
other mixed vertex
vertex of FVD(C)
Hausdorff boundary
farthest boundary

Fig. 3: Features of the Hausdorff Voronoi
region of a point c ∈ C

y

root(P )p1

p2

Fig. 4: The 2-point cluster Q
(red), forward limiting w.r.t. the
3-point cluster P (black) with P -
circle Ky; portion Kf

y (shaded)
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A line segment c1c2 is a chord of cluster C if c1, c2 ∈ CH(C) and c1 6= c2. In
Fig. 4, p1p2 is a chord of cluster P .

Definition 2 (C-circle Ky; Kf
y , Kr

y [22]). Let uv be an edge of T (C) bisecting
a chord c1c2 of C ∈ F . A circle centered at y ∈ uv of radius d(y, c1) = df(y, C)
is called the C-circle of y and is denoted as Ky. The chord c1c2 partitions Ky in
two parts: Kf

y and Kr
y, where Kf

y is the part that encloses the two points of C

that define root(C). In case y and root(C) are on the same edge of T (C), Kf
y

is the portion of Ky that is enclosed in the halfplane bounded by c1c2 which does
not contain root(C).

Definition 3 (Rear/forward limiting cluster [22]). A cluster P ∈ F \ {C}
is rear limiting with respect to C, if there is a C-circle Ky such that P is enclosed
in Kr

y ∪ convC. Similarly, P is forward limiting with respect to C, if there is a

C-circle Ky such that P is enclosed in Kf
y ∪ convC. See Fig. 4.

Properties. (They can be directly derived from Lemma 2, Properties 2, 3 [22].)

1. If hreg(C) 6= ∅, then hreg(C) ∩ T (C) consists of exactly one non-empty
connected component.

2. Consider a point v of T (P ), such that v /∈ hreg(P ). Let Q be a cluster, which
is closer to v than P . Then, only one of the subtrees of T (P ) rooted at v,
might contain points which are closer to P than to Q.

3. Let uv be an edge of T (P ). If both u and v are closer to Q than to P then
hregF (P ) cannot intersect uv.

4. Region hregF (P ) = ∅, if and only if there is a cluster Q ⊂ convP , or there
is a pair of clusters {Q,R} such that Q is rear limiting and R is forward
limiting with the same P -circle. Pair {Q,R} is called a killing pair for P .

3 A Randomized Incremental Algorithm

Let C1, . . . , Ck be a random permutation of the clusters in family F , and let Fi =
{C1, . . . , Ci} for 1 ≤ i ≤ k. The algorithm iteratively constructs HVD(F1), . . . ,
HVD(Fk) = HVD(F ). The cluster Ci is inserted in HVD(Fi−1) as follows:

1. Identify a point t that is closer to Ci than to any cluster in Fi−1 (i.e.,
t ∈ hregFi

(Ci)) or determine that no such point exists (i.e., hregFi
(Ci) = ∅).

2. If t exists, grow hregFi
(Ci) starting from t and update HVD(Fi−1) to derive

HVD(Fi); otherwise, HVD(Fi) = HVD(Fi−1).

The main challenge is to perform Step 1 efficiently. Step 2 can be performed
in linear time [22]. Throughout this section, we skip the subscript Fi and let
hreg(Ci) stand for hregFi

(Ci).
To identify a representative point t in hreg(Ci) (Step 1) it is enough to search

along T (Ci), by Property 1. However, hreg(Ci) ∩ T (Ci) might not contain a
vertex of T (Ci), see e.g., the gray region in Fig. 2. In this case, hreg(Ci) is either
empty, or intersects exactly one edge of T (Ci), which is called a candidate edge.
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Definition 4. Let uv be an edge of T (Ci). Let the clusters Qu, Qv ∈ Fi−1 be the
clusters closest to u and v respectively. We call uv a candidate edge if Qu 6= Qv

and uv satisfies the following predicate:
cand(uv) = df(u,Q

u) < df(u,Ci) < df(u,Q
v)∧df(v,Qv) < df(v, Ci) < df(v,Q

u).

By Properties 2 and 3 we derive the following.

Lemma 1. Suppose hreg(Ci) ∩ T (Ci) does not contain any vertex of T (Ci).
Then at most one edge uv of T (Ci) can be a candidate edge, in which case
hreg(Ci) ∩ T (Ci) ⊂ uv. Otherwise hreg(Ci) = ∅.

A high-level description of Step 1 is as follows: We traverse T (Ci) starting
at root(Ci), checking its vertices and pruning if possible appropriate subtrees
according to Property 3. In this process we either determine t as a vertex of
T (Ci), or we determine a candidate edge uv, or hreg(Ci) = ∅. Pseudocode is
given as Procedure 1 below, which should be run with u = root(Ci).

In more detail, to check if a vertex w suits as t, determine the cluster Qw ∈
Fi−1, which is nearest to w by point location in HVD(Fi−1). If df(w,Ci) <
df(w,Q

w), then t = w. To compute df(w,P ) for a cluster P , do point location in
FVD(P ). If Procedure 1 identifies a candidate edge, the representative point t
is determined by performing parametric point location along the candidate edge
in HVD(Fi−1).

Procedure 1 Tracing the subtree of T (Ci) rooted at u (within Step 1)

Require: df(u,Ci) > df(u,Q
u).

Let v and w be children of u.
Locate v and w in HVD(Fi−1) to obtain Qv and Qw respectively.
if df(v, Ci) < df(v,Q

v) or df(w,Ci) < df(w,Q
w) then return v or w respectively.

if either uv or uw is a candidate edge then
return the uv or uw respectively.

if df(v, Ci) < df(v,Q
u) then . Otherwise, prune the subtree of w

Set u = w and recurse.
if df(w,Ci) < df(w,Q

u) then . Otherwise, prune the subtree of v
Set u = v and recurse.

Definition 5 (Parametric point location). Given HVD(Fi−1) and a candi-
date edge uv ⊂ T (Ci) determine the cluster Pj ∈ Fi−1 and the point t ∈ uv such
that df(t, Ci) = df(t, Pj) = min

P∈Fi−1

df(t, P ). If such point p does not exist, return

nil.

Parametric point location in the Hausdorff Voronoi diagram is performed
using the data structure that stores the diagram. Its performance determines
the time complexity of our algorithm. In Sections 4 and 5, we describe the data
structures and the algorithms used to answer the necessary queries.
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4 Separator Decomposition

In this section we describe a data structure to efficiently perform point location
and answer so-called segment queries in a tree-type of planar subdivision such
as a farthest Voronoi diagram.

It is well-known [19] that any tree with h vertices has a vertex called centroid,
removal of which decomposes the tree into subtrees of at most h/2 vertices each.
The centroid can be found in O(h) time [19]. Thus, the farthest Voronoi diagram
of a cluster P can be organized as a balanced tree, whose nodes correspond to
vertices of the diagram. This representation is called the separator decomposition,
it is denoted as SD(P ), and can be built as follows:

– Find a centroid c of T (P ). Create a node for c and assign it as the root node.

– Remove c from T (P ). Recursively build the trees for the remaining three
connected components, and link them as subtrees of the root.

Point location in SD(P ) for a query point q, is performed as follows. Starting
from the root of SD(P ), perform a constant-time test of the query point q against
a node of SD(P ), to decide in which of the node’s subtrees to continue. When a
leaf of SD(P ) is reached, choose p among the owners of the three regions that are
adjacent to the corresponding vertex of FVD(P ). The test of q against a node α
of SD(P ) is due to Aronov et al. [4]. In more detail, let the node α correspond to
a vertex w of FVD(P ). Let the points p1, p2, p3 ∈ P be the owners of the three
regions of FVD(P ), incident to w. Consider the rays ri, i = 1, 2, 3 with origin at w
and direction −−→piw respectively. Each ray ri lies entirely inside fregP (pi), and thus
r1, r2 and r3 subdivide the plane into three sectors with exactly one connected
component of T (P ) \ {w} in each sector. Choose the sector that contains q, and
pick the corresponding subtree of α.

A segment query in a farthest Voronoi diagram is as follows. Let C,P ∈ F .
Given FVD(P ) and a segment uv ⊂ T (C) such that df(u,C) < df(u, P ) and
df(v, C) > df(v, P ), find the point x ∈ uv, that is equidistant from both C and
P (df(x,C) = df(x, P )).

If FVD(P ) is represented as a separator decomposition, the segment query
can be performed efficiently similarly to a point location query with the difference
that we test a segment against a node of SD(P ). In particular, consider a node
of SD(P ) corresponding to a vertex w of FVD(P ). Let rays ri, i = 1, 2, 3, be
defined as above. Consider the (at most two) intersection points of uv with the
rays ri. If any of these points is equidistant to C and P , return it. Otherwise,
since P and C are non-crossing, there is exactly one subsegment u′v′ ⊂ uv such
that df(u

′, C) < df(u
′, P ) and df(v

′, C) > df(v
′, P ), where u′, v′ can be any of u,

v, or the intersection points. The subsegment u′v′ can be computed in constant
time, together with one of the three sectors where u′v′ is contained.

If we reached a leaf of SD(P ), we are left with a single edge e of T (P ). Suppose
e bisects the chord p1p2 of P , and the current u′v′ bisects the chord c1c2 of C.
Then, return as point x the center of the circle passing through p, c1, c2, where
p is the point among p1, p2 farthest from x.
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Lemma 2. The separator decomposition SD(P ) of a cluster P ∈ F can be built
in O(np log np) time, where np is the number of vertices of FVD(P ). Both the
point location and the segment query in SD(P ) require O(log np) time.

5 Voronoi Hierarchy for the Hausdorff Voronoi Diagram

Consider a set S of k sites. The Voronoi hierarchy of S is a sequence of levels
S = S(0) ⊇ . . . ⊇ S(h). For ` ∈ {1, . . . , h}, level S(`) is a random sample of
S(`−1) according to a Bernoulli distribution with parameter β ∈ (0, 1). For each
level S(`) the data structure stores the Voronoi diagram of S(`). The Voronoi
hierarchy is inspired by the Delaunay hierarchy given by Devillers [11].

In the Hausdorff Voronoi diagram sites are clusters of non-constant size each.
We first adapt some known properties of the hierarchy to be valid in such an en-
vironment. Then, we consider several enhancements of the hierarchy to handle
efficiently the Hausdorff Voronoi diagram and its queries, such as point loca-
tion through walks, dynamic updates, including the handling of empty Voronoi
regions, and parametric point location along a segment.

Lemma 3. Let the underlying Voronoi diagram have size O(n), where n is the
total size of the sites. Then for any set S of k sites of total size n, the Voronoi
hierarchy of S has O(n) expected size and O(log k) expected number of levels.

To perform point location in the Voronoi hierarchy for a query point q, we
start at level h, and for each level `, we determine the site s` ∈ S(`) that is closest
to q, by performing a walk. Each step of the walk moves from a site s ∈ S(`) to a
neighbor of s, such that the distance to q is reduced. A walk at level `− 1 starts
from s`. The answer to the query is s0.

Lemma 4. Let s`0, . . . , s
`
r = s` be the sequence of sites visited at level ` during

the point location of a query point q. Assuming that df(q, s
`
i) < d(q, s`i−1), for

i ∈ {1, . . . , r}, and either s`+1 = s`0, or df(q, s
`
0) < df(q, s

`+1), the expectation of
the length r of the walk at level ` is constant.

In the original Voronoi hierarchy for a set of disjoint convex objects [15],
one step of the walk to determine the correct neighboring site consists of a
binary search among the neighbors of the site. For a Hausdorff Voronoi diagram,
however, there is no natural ordering for the set of neighbors of a site. In addition,
the subset of points in a cluster that contribute to the diagram reduces over time.

A single step of the walk for the Hausdorff Voronoi diagram. Consider point
location in the Voronoi hierarchy for a family F of non-crossing clusters and a
query point q. Let C ∈ F (`) be the current cluster being considered at level `.
We need to determine a cluster Q at level ` whose region neighbors the region
of C and whose distance from q gets reduced. Let Ĉ ⊂ C denote the set of all
active points c ∈ C that contribute a face to hregF(`)(C) at the current level `

(hregF(`)(c) 6= ∅). Let hreg
(`)
F (·) denote hregF(`)(·).
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The cluster Q is determined as follows. Let c ∈ Ĉ be the active point that
is farthest from query point q (q ∈ fregĈ(c)). To determine point c it is enough

to draw the tangents from q to CH(Ĉ). Let v1, . . . , vj be the pure vertices in

hreg
(`)
F (c) (see Fig. 5) in counterclockwise order, and let Q0, . . . , Qj , Qj+1 be

their respective adjacent clusters. The rays −→cv1, . . . , −→cvj partition fregĈ(c) into
j + 1 unbounded regions. The walk should move from C to Qi such that the
ray −→cq immediately follows −→cvi or immediately precedes −−−→cvi+1. For example, in
Fig. 5, c ∈ Ĉ(`) is the farthest active point from q (df(q, Ĉ

(`)) = d(q, c)). Region
fregĈ(c) is shown gray and its boundary is drawn bold. The step in the walk

should move from C to Q = Q2. We organize Ĉ as a sorted list of its points and
for each point c ∈ Ĉ we maintain a sorted list of all Voronoi vertices adjacent to

hreg
(`)
F (c). It can be shown that df(q, Q̂) ≤ df(q, Ĉ), thus, the above procedure

is correct. Note that df(q,Q) may be greater than df(q, C) because df(q, Ĉ) may
be different from df(q, C) if q 6∈ hreg(C).

c ∈ Ĉ

v1v2

v3
Q0

Q1

Q2

Q3

q

Fig. 5: The step of a walk from the cluster C

Parametric point location in the Voronoi hierarchy. We are given HVD(Fi−1),
stored as a Voronoi hierarchy, and the candidate edge uv ∈ T (Ci). For each
level ` of the Voronoi hierarchy, starting from the last level h, we search for

the cluster Q` ∈ F
(`)
i−1 and a point u` ∈ uv such that u` ∈ hreg

F
(`)
i−1

(Q`) and

df(u
`, Ci) = df(u

`, Q`). If at some level there is no such point, return nil. Else
return the cluster C0 and the point u0 determined at level 0.

In more detail, suppose that u`+1 and Q`+1 have been computed, for some
` ∈ {0, . . . , h − 1}. To compute u` and Q`, we determine a sequence u`+1 =

a0, a1, . . . , ar = u` of points on uv. Let Qaj be the cluster in F
(`)
i−1 nearest to aj .

It is determined by a walk at level ` starting with Qaj−1 . Then point aj+1 is the
point on uv, equidistant from Ci and Qaj (df(aj+1, Ci) = df(aj+1, Q

aj )). If aj is
equidistant from Ci and Qaj , we are done at level `; continue to level `− 1 with
u` = aj and Q` = Qaj . Else, if df(v,Q

aj ) > df(v, Ci), perform a segment query
to determine aj+1. Otherwise, report that a point t does not exist.

Lemma 5. The expected number of visits of clusters at level ` during the para-
metric point location is O(1).
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Handling the empty regions. After inserting Ci at level 0 of the hierarchy for
HVD(Fi−1), we insert Ci into the series of higher levels. When Ci is inserted at
a given level, however, a region of another cluster may become empty.

We call a cluster P critical at level ` if hreg
(`−1)
Fi−1

(P ) 6= ∅, hreg
(`−1)
Fi

(P ) = ∅,
and hreg

(`)
Fi

(P ) 6= ∅. Such a cluster P becomes an obstacle to correct point
location in the Voronoi hierarchy for HVD(Fi). Indeed, if a query point lies in

hreg
(`)
Fi

(P ), we do not know where to continue the point location at level `− 1.
To fix the problem, P can be deleted from all levels, but this is computation-

ally expensive. Instead, we link P to at most two other clusters Q,R ∈ F (`−1)
i ,

such that every point q ∈ R2 is closer to either Q or to R than to P . Property 4
guarantees that such a cluster or two clusters exist (a cluster contained in convP
or a killing pair for P , respectively).

We now describe how to find a killing pair for P . While inserting Ci at level

`−1, we store all (deleted) P -mixed vertices of hreg
(`−1)
Fi−1

(P ) in a list V . At level

`, for each P -mixed vertex v of hreg
(`)
Fi

(P ), we check if v is closer to Ci or to P .
If df(v, Ci) ≥ df(v, P ), let c be the point in Ci for which df(v, Ci) = d(v, c). Note
that c /∈ convP , which will be useful. The linking is performed as follows:

– If all P -mixed vertices of hreg
(`)
Fi−1

(P ) are closer to Ci than to P , link only

to Ci. (This happens only if Ci 6∈ F (`).)
– Else find the cluster K ∈ F (`−1) such that {K,Ci} is a killing pair for P . If
Ci ∈ F (`), link only to cluster K. Otherwise, link to both K and Ci.

What remains is to determine cluster K. To this aim, we use list V and
point c. Each vertex u ∈ V is equidistant from two points p1, p2 ∈ P , and one
point q ∈ Q, for some Q ∈ F (`−1). We simply check whether c and q are on
different sides of the chord p1p2. If they are, then we set K = Q and we stop.
By Property 4, {K,Ci} is a killing pair for P , and thus the linking is correct.

We summarize the result on the Voronoi hierarchy in the following lemma,
which is easily derived from Lemmas 3 to 5 and the discussion in Section 5.

Theorem 1. The Voronoi hierarchy for the Hausdorff Voronoi diagram of a
family of k clusters of total complexity n has expected size O(n). Both the point
location query and the parametric point location take expected O(log n log k) time.
Insertion of a cluster takes amortized O((N/k) log n) time, where N is the total
number of update operations in all levels during the insertion of all k clusters.

6 Complexity Analysis

The running time of our algorithm depends on the number of update operations
(insertions and deletions) during the construction of the diagram. Using the
Clarkson-Shor technique [9], we prove that the expectation of this number is
linear, when clusters are inserted in random order. Note that in contrast to the
standard probabilistic argument, our proof does not assume sites (clusters) to
have constant size.
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Theorem 2. The expected number of update operations is O(n).

Theorem 2 can be easily extended to all levels of the Voronoi hierarchy. The
total time for the construction of the separator decomposition for all clusters
is O(n log n) (see Lemma 2). For each cluster C ∈ F , we perform O(|C|) point
location queries and at most one parametric point location in Voronoi hierarchy.
By Lemma 2 and Theorems 1 and 2, we conclude.

Theorem 3. The Hausdorff Voronoi diagram of non-crossing clusters can be
constructed in O(n log n log k) expected time and O(n) expected space.

Deterministic O(n) space could be achieved by using a dynamic point loca-
tion data structure for a planar subdivision [3, 5]. On this data structure, the
parametric point location can be performed as a simplified form of the para-
metric search, as described by Cheong et al. [8]. The time complexity of such
a query is t2q, where tq is the time complexity of point location in the chosen
data structure. In particular, the data structure by Baumgarten et al. [5] has
tq ∈ O(log n log log n), which leads to the construction of the Hausdorff Voronoi
diagram with expected running time O(n log2 n(log log n)2) and deterministic
space O(n).

7 Discussion and Open Problems

We have provided improved complexity algorithms for constructing the Haus-
dorff Voronoi diagram of a family of non-crossing point clusters based on ran-
domized incremental construction and point location. There is still a gap in
the complexity of constructing the Hausdorff Voronoi diagram between our best
O(n log2 n) expected time algorithm and the well-known Ω(n log n) time lower
bound. An open problem is to close or reduce this gap. It is interesting that in
the L∞ metric, a simple O(n log n)-time O(n)-space algorithm, based on plane
sweep, is known [23]. In parallel, we are considering the application of the ran-
domized incremental construction paradigm through history graphs. In future
research we plan to consider families of arbitrary point clusters that may be
crossing. In this case, the size of the diagram can vary from linear to quadratic,
and therefore, an output-sensitive algorithm is most desirable. Another direction
for research is to study the problem for clusters of segments, clusters of convex
polygons or other shapes, rather than clusters of points.
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