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Abstract. We create and discuss several modifications to traditional graph

coloring. In particular, we classify various notions of coloring in a proper

hierarchy. We concentrate on grid graphs whose colorings can be represented
by natural number entries in arrays with various restrictions.

1. Introduction and related work

A vertex coloring of a graph G = (V,E) is a (coloring) function C : V → N+

such that adjacent vertices are colored with different colors. Formally:

(∀e ∈ E)(e = {v, v′} ∧ v 6= v′ → C(v) 6= C(v′)).

A hypergraph H = (V,E) is a generalization of a graph for which hyperedges can
be subsets of V of arbitrary size. Vertex coloring in hypergraphs can be defined
in many ways, so that restricting the definition to simple graphs coincides with
traditional graph coloring. On one extreme, it is only required that the vertices of
each hyperedge are not all colored with the same color. Formally:

(∀e ∈ E)(∃v ∈ e)(∃v′ ∈ e)(|e| = 1 ∨ C(v) 6= C(v′)).

On the other extreme, it is required that the vertices of each hyperedge are all
colored with different colors. Formally:

(∀e ∈ E)(∀v ∈ e)(∀v′ ∈ e)(v 6= v′ → C(v) 6= C(v′)).

In between these two extremes, there is another possible generalization: A vertex
coloring C of hypergraph H is called conflict-free if the vertices of each hyperedge
are colored in such a way that there is a vertex whose color is unique. Formally:

(∀e ∈ E)(∃v ∈ e)(∀v′ ∈ e)(v′ 6= v → C(v′) 6= C(v)).

Conflict-free coloring can model frequency assignment for cellular networks. A
cellular network consists of two kinds of nodes: base stations and mobile agents.
Base stations have fixed positions and make up the backbone of the network; they
are modeled by vertices in V . Mobile agents are the clients of the network, served
by base stations, as follows: Every base station has a fixed frequency; this fact is
modeled by the coloring C, i.e., colors represent frequencies. When agents want to
establish a link with a base station they tune to the base station’s frequency. Since
agents are mobile, they can be in the range of many different base stations. The
range of communication of every agent is modeled by a hyperedge e ∈ E, which
is the set of base stations that are able to communicate with the agent. To avoid
interference, the system must assign frequencies to base stations in the following
way: For any range, there must be a base station in the range with a frequency that
is not reused by some other base station in the range. This requirement is fulfilled
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by the conflict-free property. One can of course solve the problem by assigning n
different frequencies to the n base stations. However, using many frequencies is
expensive, and therefore, a scheme that reuses frequencies, wherever possible, is
preferable.

The study of conflict-free colorings originated in the work of Even et al. [11]. In
addition to the practical motivation described above, this new coloring model has
drawn much attention of researchers through its purely theoretical interest and such
colorings have been the focus of several recent papers (see, e.g., [21, 13, 7, 3, 5]).

A chain or path is the graph defined as Pn = ({1, . . . , n}, {{i, i+1} | 1 ≤ i < n}).
For n ≥ 3, a ring or cycle is the graph Cn defined as a Pn with the additional edge
{n, 1}. A grid graph Gm is the cartesian product of two paths, Pm × Pm.

2. Conflict-free coloring with respect to paths of a graph

Given is a graph G, with vertex set V (G) and edge set E(G). The aim is to
color the vertices of the graph so that for each path p in the graph, there is a
vertex v in p whose color is different than the color of any other vertex in p. This
coloring is called conflict-free (CF) coloring of graph G with respect to paths. It is
a minimization problem, i.e., the goal is to find such a coloring with as few colors
as possible. Formally:

Definition 1. A k-CF-coloring is a function C : V (G)→ {1, . . . , k} such that:

(∀path p ∈ G)(∃v ∈ p)(∀v′ ∈ p)(v′ 6= v → C(v′) 6= C(v)).

The conflict-free chromatic number of a graph G, denoted by χcf(G), is the mini-
mum k for which G has a k-CF-coloring.

Since the above coloring involves sets of vertices included in a path, one can ask
the same question in terms of hypergraphs.

Definition 2. Given a graph G = (V,E), let: (a) paths(G) be the set of paths of
G, (b) vert(p) be the set of vertices of path p, (c) HG be the hypergraph:

HG = (V, {vert(p) | p ∈ paths(G)}).
Fact 3. A conflict-free coloring of graph G with respect to paths is a conflict-free
coloring of HG and vice versa.

3. Relation of conflict-free coloring with other problems

3.1. Ordered coloring. A closely related problem to CF coloring with respect to
paths is ordered coloring [16] or vertex ranking [14]. Ordered coloring is conflict-free
coloring with an additional constraint: the unique color in each path must also be
the maximum color in the path (where colors are from the set {1, . . . , k}).
Definition 4. A unique maximum (UM) coloring is a CF coloring in which the
maximum color in every path p is unique in path p.

We remark that the aforementioned definition is not what is typically given in
the literature [16]. Instead the following definition is more typical:

Definition 5. An ordered k-coloring of a graph G is a function C : V (G) →
{1, . . . , k} such that for every pair of distinct vertices v, v′, and every path p from
v to v′, if C(v) = C(v′), there is an internal vertex v′′ of p such that C(v) < C(v′′).
The ordered chromatic number of a graph G, denoted by χo(G), is the minimum k
for which G has an ordered k-coloring.
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We prove that the two definitions are equivalent:

Proposition 6. C is a UM coloring if and only if C is an ordered coloring.

Proof. If C is a UM coloring, then for any two same-color vertices v, v′, every
(v, v′)-path p has a unique maximum color, greater than C(v), which occurs in
some internal vertex of p.

If C is an ordered coloring, then consider any path p in G. The maximum color
in p has to occur exactly in one vertex. If it occurs in two vertices v, v′ of p then
there is a (v, v′)-path contained in p which has an internal vertex with a greater
color; a contradiction to the maximality of C(v) in p. �

Corollary 7. Every ordered coloring is also a CF coloring. Thus χcf(G) ≤ χo(G).

In ordered colorings, an even stronger property is true:

Proposition 8. In any ordered coloring C of G, in every connected subset S of
vertices of G, the maximum color occurring in S, i.e., max{C(v) | v ∈ S}, is unique
in S.

Proof. By contradiction; if there are two different vertices x, y in S with the max-
imum color, then there is a (x, y)-path in S, for which there is no internal vertex
with higher color. �

If we relax the requirement that in every connected subset the maximum color
is unique so that there is just a unique color (not necessary the maximum in the
connected subset), we get the notion of a centered coloring (and the corresponding
centered chromatic number), which was introduced in [19]. In [19] it was proved
that for every graph the centered chromatic number equals the ordered chromatic
number, i.e., the conflict-free and unique maximum chromatic numbers with respect
to connected subsets equal each other. However, an analogous statement is not
true for the conflict-free and unique maximum chromatic numbers with respect to
paths: The smallest graph G for which χcf(G) < χo(G) consists of a triangle, K3,
a complement of a triangle, K3, and a matching of three edges where each edge has
one vertex in K3 and the other in K3. It is not difficult to prove that χcf(G) = 3
whereas χo(G) = 4 (see [6]).

Both χcf and χo are monotone with respect to subgraphs:

Proposition 9. If X ⊆ Y , then χcf(X) ≤ χcf(Y ) and χo(X) ≤ χo(Y ).

Proof. Graph X contains a subset of the paths of Y , so the restriction of an optimal
coloring of V (Y ) to V (X) is a CF-coloring for X. �

Additionally, the ordered chromatic number is monotone with respect to minors.
A graph X is a minor of Y , denoted as X 4 Y , if there is a subgraph G of Y , and a
sequence G0, . . . , Gk, with G0 = G and Gk = X, such that Gi = Gi−1/ei−1, where
ei−1 ∈ E(Gi−1) (i.e., edge ei−1 is contracted in Gi−1), for i ∈ {1, . . . , k}. We give a
self-contained proof of χo’s monotonicity under minors for completeness, although
one can also be deduced from results in [19]:

Proposition 10. If X 4 Y , then χo(X) ≤ χo(Y ).

Proof. If G is a subgraph of Y , and C an ordered coloring of Y , the restriction of
C to V (G) is an ordered coloring of G. Given G and an ordered coloring C of G,
then the following is an ordered coloring of G/xy: For v different from x, y, use
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the same color as in C. For the vertex vxy that arises from the contraction of edge
xy, use max{C(x), C(y)}. For every path p of G/xy, either vxy 6∈ p, in which case
p is also a path in G, and thus it contains a maximum unique color, or p = p1vxyp2
(with p1, p2 possibly empty paths), in which case the unique color of p occurs either
in vxy or in some vertex of p1 or p2, because there is a path in G containing p1, p2
and at least one of x, y. �

3.2. Squarefree colorings. We obtain another related problem by looking at col-
orings of paths as strings. We impose the following restriction: Every coloring of
a path, when viewed as a string, shall not contain a repetition. Formally, a string
w ∈ (N+)∗ is called squarefree if there is no substring of w of the form x2 = xx,
where x is a nonempty string. Given a coloring C of the vertices of a graph, for
every path p = v1 . . . v`, we define the color string of p to be C(v1) . . . C(v`).

Definition 11. A coloring C : V (G) → {1, . . . , k} is a squarefree k-coloring if the
color string of every path in G is squarefree.

Corollary 12. Every CF-coloring is squarefree and thus χsf(G) ≤ χcf(G).

We have the following hierarchical relation between colorings:

C ⊃ SF ⊃ CF ⊃ OC

where C is the class of ‘traditional’ vertex colorings of graphs. The above is a proper
hierarchy as can be exhibited by the following colorings of the chain P8:

12121212 traditional but not squarefree;

12312131 squarefree but not conflict-free;

41421431 conflict-free but not ordered;

12131214 ordered.

In terms of chromatic numbers:

Proposition 13. For every graph G, χ(G) ≤ χsf(G) ≤ χcf(G) ≤ χo(G).

For many graphs, squarefree coloring requires substantially fewer colors than CF
coloring and ordered coloring: For example, a seminal result by Thue shows that 3
colors suffice to color any chain [25]. As we will see, for chains, both ordered coloring
and CF coloring require Ω(log n) colors. Traditional chain coloring can be done, of
course, with at most 2 colors. A coloring of a chain can be seen as a string, over an
alphabet of possible colors. The proof of Thue relies on squarefreeness preserving
morphisms. The following is a squarefreeness preserving morphism on the three
letter alphabet {a, b, c}: a 7→ abcab, b 7→ acabcb, c 7→ acbcacb. Starting with the
word a, and by repetitive applications, the above morphism gives arbitrarily long
squarefree words on three letters: abcabacabcbacbcacbabcabacabcb . . .

More recently, in [8] it was proved that every ring can be squarefree colored with
3 colors, except a few of them (C5, C7, C10, C14, C17) that require 4 colors. As we
will see, for rings, both ordered coloring and CF coloring require Ω(log n) colors.
Traditional ring coloring can be done, of course, with at most 3 colors. The above
squarefree result for rings can be also interpreted as follows: For every ring, there is
a subdivision of it which is squarefree colorable using 3 colors. Recently, in [22], it
was proved that every graph has a subdivision which is squarefree colorable using
3 colors, which is a striking generalization of Thue’s result.
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3.3. Cubefree and other colorings. Another related class of colorings consists
of cubefree colorings, where color strings of paths can not contain a x3 substring,
for x non-empty. It is known ([25] and implicit in [23]) that 2 colors suffice to color
any chain. A cubefreeness preserving morphism, on a two letter alphabet {a, b},
is quite simple: a 7→ ba, b 7→ ba. A cubefree word starts like: abbabaabbaab.
Cubefree colorings can also be put in the above hierarchy over squarefree colorings
but they are not comparable with traditional colorings. Squarefree, cubefree, and
related colorings have been studied extensively for strings (i.e., for the chain graph
in our setting). A good starting point for the interested reader is the book by
Allouche and Shallit [1]. Both squarefree and cubefree colorings are special cases
of nonrepetitive colorings [2, 12]. The relationship between nonrepetitive colorings
and other notions, including ordered colorings, was recently investigated in [20].

4. Conflict-free coloring some families of graphs

4.1. Chain. Conflict-free coloring of a chain is better known as conflict-free color-
ing with respect to intervals [7]. For completeness, we give a proof that χcf(Pn) =
1 + blg nc. The method yields a CF coloring which is also an ordered coloring and
is highly symmetric, which we call recursively palindromic coloring.

4.1.1. A lower bound for χcf(Pn). Observe that in any conflict-free coloring of Pn

there is a uniquely colored vertex v and thus every path that contains v has the
conflict-free property. Graph G − v consists of at least two chains, one of which
has at least bn/2c vertices. Therefore we have the following recurrence for χcf(Pn):
χcf(P1) = 1 and χcf(Pn) ≥ 1+χcf(Pbn/2c), which easily implies χcf(Pn) ≥ 1+blg nc.

4.1.2. An optimal conflict-free coloring of Pn. An optimal coloring is acquired by
taking the first n terms of the sequence Ck with k such that n ≤ 2k − 1, defined
recursively as follows: C1 = (1), and for k > 1, Ck = Ck−1 ◦ (k) ◦ Ck−1, where
◦ is the concatenation operation for sequences of symbols. Color i is used only if
n ≥ 2i−1, so in fact 1 + blg nc colors are used by the coloring. It is not difficult to
prove that the coloring is conflict-free.

4.2. Ring. To conflict-free color a ring, we use the conflict-free coloring of a chain.
We pick an arbitrary vertex v and color it with a unique color (not to be reused
anywhere else in the coloring). The remaining vertices form a chain that we color
with the method for chains described in section 4.1. This method colors Cn, a ring
of n vertices, with 2 + blg(n − 1)c colors. For example, if n = 8, the coloring is
41213121, where ‘4’ is the first unique color used for v.

Claim 14. A conflict-free coloring of Cn requires 2 + blg (n− 1)c colors.

Proof. Assume for the sake of contradiction that you can color with 1+blg (n− 1)c
colors. Remove a uniquely colored vertex in the ring. The remaining n− 1 vertices
use blg(n − 1)c colors and constitute a CF coloring of Pn−1, which is impossible
since at least 1 + blg(n− 1)c colors are required to CF color Pn−1. �

4.3. Tree. For a tree graph, we use the idea of a 1/2-separator [15, 17, 10]. A 1/2-
separator is a vertex which, when removed, leaves connected components whose size
is bounded by n/2. The method to color a tree is as follows: Find a 1/2-separator,
color it with a unique color. Then color recursively the connected components,
after the removal of the 1/2-separator. Thus, χcf(T ) ≤ 1 + blg nc for a tree with n
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vertices. See also [16]. If a maximum color is used for every separator, the above
coloring is an ordered coloring. Moreover, one can find optimal ordered colorings
of trees [14, 24].

4.4. Grid. A grid of size m × m, i.e, with n = m2 vertices can be colored with
an ordered coloring with at most 4m colors: The idea is to use unique maximum
colors for the row closest to the middle and column closest to the middle (that is
less than 2m colors), and then color recursively in the 4 subgrids with size at most
bm/2c×bm/2c each. A slight variation gives a coloring with at most 3m color: Use
m unique maximum colors for the row closest to the middle, and then use about
m/2 more unique colors for the part of the middle column over the middle row, and
the same m/2 colors for the middle column under the middle row; then use recursion
in the 4 subgrids with size at most bm/2c×bm/2c each. The above coloring is good
enough even if we add one edge in every internal face of the standard drawing of
Gm to make every internal face triangular (we get a triangular grid), or even if we
add two edges in every face. This indicates that 3m is not optimal and, in fact, it
has been improved in [4]. For a general planar graph G, using separator theorems

[18, 9], it can be proved that χo(G) ≤ 3(
√

6 + 2)
√
n ≈ 13.3485

√
n (see [16]). As we

have seen, the previous result can be far from optimal for well structured planar
graphs like the grid. There is also a lower bound of χo(Gm) ≥ m (also from [16]).
We give another proof of the basic lower bound of χo(Gm) ≥ m, based on a minor
graphs argument:

Proposition 15. If Gm is the m×m grid, χo(Gm) ≥ m.

Proof. By induction. Base: For m = 1, it is true, as χo(K1) = 1. For the inductive
step, consider a Hamilton path p of Gm, with m > 1. If Gm is ordered colored,
then there is a vertex v with a unique color in p (and thus in G). So, for some v,
χo(Gm) = 1 + χo(Gm − v). However, for every v, Gm−1 4 Gm − v (easy proof).
Therefore, from proposition 10, χo(G) ≥ 1 + χo(Gm−1) and from the inductive
hypothesis, χo(G) ≥ 1 +m− 1 = m. �

In order to improve the upper bound of 3m, we need to find more intricate
separators, that will be colored with unique colors. The idea is to use separators
along diagonals in the grid. We will also need to find efficient colorings of some
subgraphs that are left after we remove diagonal-like separators. Such a subgraph
of the grid is the rhombus Rx, shown in the left part of figure 1; it has height and
width x. For example, it is proved in [4] that χo(Rx) ≤ 3x/2 (see the right part
of figure 1 for the separation method) and that χo(Gm) ≤ 18m/7 ≈ 2.5714m as a
consequence of a partition of the grid with the help of separators shown in figure 2.
A lower bound of 4m/3 ≈ 1.333m is also proved in [4].

5. Conflict-free coloring in arrays

5.1. Arrays and meander paths. Consider the m ×m grid with a conflict-free
coloring with respect to paths. The paths defined in the graph are simple, in the
sense that they are not self-intersecting, and in the standard drawing of a graph
(see figure 3) they always go along the horizontal or the vertical direction. Thus
they look like meanders. Instead of placing colors on a grid drawn like the one in
the left part of figure 3, it is more convenient to fill the colors in a two-dimensional
array, of size m in each dimension, as in the right part of figure 3.
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Figure 1. The rhombus subgraph Rx and its separation
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Figure 2. An 18m/7 upper bound
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Figure 3. A conflict-free coloring of the 3 × 3 grid with respect
to paths and of the 3× 3 array with respect to meander paths

5.2. Arrays, subarrays, and thin subarrays. We are going to relax some of
the constraints of conflict-free coloring with respect to meander paths (that forces
linear use of colors with respect to m), in order to achieve logarithmic colorings
with respect to m. We relax constraints in the following two ways:

• In every subarray, there must be a unique color.
• In every thin subarray (i.e., a subarray which has length 1 in one of the

two dimensions), there must be a unique color.

We are going to extensively use the conflict-free coloring of the chain, given in
section 4.1. If points are numbered 1 through n, from left to right on a chain,
then the i-th point’s color is denoted by C(i), i.e., C(1) = 1, C(2) = 2, C(3) = 1,
C(4) = 3, and so on. We mention some results without proof details.



8 PANAGIOTIS CHEILARIS, ERNST SPECKER, AND STATHIS ZACHOS

Proposition 16. There is a conflict-free coloring with respect to subarrays of the
m×m array with asymptotically 2 lgm colors.

Proof. Each entry in the 2-dimensional array is encoded by a pair (i, j), where
i is the row, and j is the column of the entry. The entry (i1, i2) is colored as
C(i1, i2) = C(i1) + C(i2)− 1. �

Proposition 17. There is a conflict-free coloring with respect to thin subarrays of
the m×m array with asymptotically lgm colors.

Proof. The entry (i1, i2) is colored as C(i1, i2) = (C(i1)+C(i2)−1) mod1dlg(m+1)e,
where mod1 is the modulo operator, but returning dlg(m + 1)e instead of 0 (i.e.,
its minimum output value is 1). �

5.3. Multidimensional arrays. One can generalize the previous results to multi-
dimensional grids or arrays. A grid in d dimensions, in which each side has length
m, contains md vertices. A multidimensional grid can also be viewed as a multi-
dimensional array. One can conflict-free color with respect to subarrays, or with
respect to thin subarrays (subarrays which have length different than one in at
most one dimension). Each point (or cell) of the grid (or array) is denoted by its
d coordinates: (i1, . . . , id). Each coordinate ranges from 1 to m. We mention some
results without proof details.

Proposition 18. There is a conflict-free coloring with respect to subarrays of the
m×m× · · · ×m d-dimensional array with asymptotically d lgm colors.

Proof. The point (i1, . . . , id) of the d-dimensional grid is colored as follows:

C(i1, . . . , ik) =

d∑
k=1

C(ik)− (d− 1). �

Proposition 19. There is a conflict-free coloring with respect to thin subarrays of
the m×m× · · · ×m d-dimensional array with asymptotically lgm colors.

Proof. The point (i1, . . . , id) of the d-dimensional grid is colored as follows:

C(i1, . . . , ik) =

(
d∑

k=1

C(ik)− (d− 1)

)
mod1dlg(m+ 1)e

where mod1 is the modulo operator, but returning dlg(m + 1)e instead of 0 (i.e.,
its minimum output value is 1). �

It is interesting that the above coloring with respect to thin subarrays uses
asymptotically only lgm colors, i.e., the number of colors used does not depend
on the dimension d. Another interesting fact is that the coloring is very far from
satisfying the unique maximum property. It is an open problem, whether one can
use O(logm) colors with this additional stronger constraint.

5.4. Conflict-free coloring with respect to first minor submatrices. Given
is a matrix A (i.e., a two dimensional array) with r rows and c columns. For every
row i and every column j of A, a submatrix Mij , called a first minor submatrix,
is defined by removing the elements of row i and the elements of column c. De-
terminants of first minor submatrices are used in the Laplace expansion of the
determinant of a square matrix A.
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We denote by χcf(Hr,c) the minimum number of colors required to conflict-
free color the r × c matrix with respect to first minor submatrices. Because of
symmetry, we have χcf(Hr,c) = χcf(Hc,r). We denote by χum(Hr,c) the minimum
number of colors required to conflict-free color the r×c matrix, with the additional
constraint that the unique color is the maximum color. Again, because of symmetry,
χum(Hr,c) = χum(Hc,r).

One can conflict-free color a r × c matrix with respect to all first minor subma-
trices by using a constant number of colors. In fact, four colors suffice, even if we
require the stronger property of unique maximum color.

Proposition 20. For all r, c, χcf(Hr,c) ≤ χum(Hr,c) ≤ 4.

Proof. Color all entries of the matrix with 1, except a 2 × 2 submatrix which is
colored as

(
3 2
2 4

)
. Every first minor is conflict-free colored with the unique maximum

property, because it either (a) contains one of 3 or 4, or (b) if it contains no 3 and
4, then it contains exactly one 2. �

The above result is tight for both χcf(Hr,c) and χum(Hr,c), except for some small
values of r, c. For example, χcf(H2,2) = χcf(H2,2) = 1, χum(H2,c) = 3 for c ≥ 2,
χcf(H3,c) = 3 for c ≥ 3. Moreover, for some small values of r, c, the two chromatic
numbers differ, e.g., χum(H2,4) = 3, whereas χcf(H2,4) = 2.

6. Open problems and future research

One could study the conflict-free coloring problem in an online setting; for rele-
vant results, see [7, 5]. The most important open problem in the online setting for
chains is narrowing the gap between lower and upper bound in the deterministic
online model: Ω(log n), and O(log2 n), respectively, which are a logarithmic factor
apart.

Another open problem is finding the exact ordered and conflict-free chromatic
number of the m×m grid, improving the lower and upper bounds of [4].

Finally, it would be nice to develop a better understanding of the relationship
between conflict-free and ordered colorings. We have seen that the two respective
chromatic numbers, χcf and χo, are not always equal, but how far can they be?
There are some initial results in that direction in [6]. One particularly interesting
open problem is whether the conflict-free chromatic number with respect to paths
is monotone under taking minors, like the ordered chromatic number.
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23. E. Prouhet, Mémoire sur quelques relations entre les puissances des nombres, Comptes Ren-
dus de l’Académie des Sciences, Paris, Série I 33 (1851), 225.
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