
Conflict-Free Coloring for Intervals:
from Offline to Online

[extended abstract]

Amotz Bar-Noy
∗

Computer and Information
Science Department

Brooklyn College
2900 Bedford Avenue
Brooklyn, NY, 11210

Panagiotis Cheilaris
†

The Graduate Center
City University of New York

365 Fifth Avenue
New York, NY, 10016

Shakhar Smorodinsky
‡

Courant Institute for
Mathematical Sciences

New York University
251 Mercer Street

New York, NY, 10012

ABSTRACT
This paper studies deterministic algorithms for a frequency
assignment problem in cellular networks. A cellular network
consists of fixed-position base stations and moving agents.
Each base station operates at a fixed frequency, and this al-
lows an agent tuned at this frequency to communicate with
the base station. Each agent has a specific range of com-
munication (described as a geometric shape, e.g., a disc)
that may contain one or several base stations. To avoid in-
terference, the goal is to assign frequencies to base stations
such that for any range, there exists a base station in the
range with a frequency that is not reused by some other base
station in the range. The base station with this unique (in
the range) frequency serves the aforementioned range. Since
using many frequencies is expensive, the optimization goal
is to use as few frequencies as possible. The problem can
be modeled as a special coloring problem for hypergraphs.
Base stations are the vertices, ranges are the hyperedges,
and colors (frequencies) must be assigned to vertices follow-
ing the conflict-free property: In every hyperedge there is a
color that occurs exactly once.

We concentrate on the special case where the n base sta-
tions lie on the real line and ranges are the n(n + 1)/2 non-
empty subsets of consecutive points. This problem is called
conflict-free coloring for intervals. We introduce a hierarchy
of four models for the above problem: (i) the static model,
where the complete hypergraph is given and all vertices are
colored simultaneously, (ii) the dynamic offline model, where
the vertices appear in some order and the conflict-free prop-

∗Email: amotz@sci.brooklyn.cuny.edu
†Email: philaris@sci.brooklyn.cuny.edu
‡Email: shakhar@cims.nyu.edu
Work on this paper was supported by the NSF Mathematical
Sciences Postdoctoral Fellowship award 0402492.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SPAA’06, July 30–August 2, 2006, Cambridge, Massachusetts, USA.
Copyright 2006 ACM 1-59593-262-3/06/0007 ...$5.00.

erty has to be maintained at all times, (iii) the online abso-
lute positions model where the order is revealed in an online
fashion and the final hypergraph and positions are known,
and (iv) the online relative positions model where there is
no knowledge about the final hypergraph and the final po-
sitions of vertices.

In the case of intervals, the hierarchy is strict. In the dy-
namic offline model, we give a deterministic algorithm that
uses at most log3/2 n+1 colors and exhibit inputs that force
any algorithm to use at least 2 log3 n + 1 colors. For the
online absolute positions model, we give two deterministic
algorithms that use at most 2blog2(n + 1)c and 3dlog3 ne
colors, respectively. To the best of our knowledge, these
are the first O(log n) deterministic online algorithms, in a
non-trivial model. In the online relative positions model,
we resolve an open problem by showing a tight analysis on
the number of colors used by the natural greedy online algo-
rithm, that at each step uses the smallest color possible. In
the case of conflict-free coloring only with respect to inter-
vals that contain either of the two extreme points, we show
a strong separation between static and dynamic models and
we provide tight bounds for all four models up to an additive
term of two.

Categories and Subject Descriptors
F.2 [Theory of Computation]: Analysis of algorithms
and problem complexity

General Terms
Algorithms, Theory

Keywords
Online algorithms, cellular networks, frequency assignment,
conflict free, coloring

1. INTRODUCTION
A vertex coloring of a graph G(V, E) is a function χ : V →

IN+ such that for every edge {v1, v2} ∈ E: χ(v1) 6= χ(v2). A
hypergraph G(V, E) is a generalization of a graph for which
hyperedges can be arbitrary-sized non-empty subsets of V .
There are several ways to define vertex coloring in hyper-
graphs: On one extreme, it is required that for every hyper-
edge, not all colors are the same (there are at least two col-
ors); on the other extreme, it is required that for every edge,
no color is repeated (all the colors are different). In between
these two extremes, there is another possible generalization:
A vertex coloring χ of hypergraph G(V, E) is called conflict-
free if in every hyperedge e there is a vertex whose color is
unique among all other colors in the hyperedge. Formally,
∀e ∈ E : ∃v ∈ e : ∀v′ ∈ e : v′ 6= v → χ(v′) 6= χ(v).

Conflict-free coloring models frequency assignment for cel-
lular networks. A cellular network consists of two kinds of
nodes: base stations and mobile agents. Base stations have
fixed positions and provide the backbone of the network;
they are modeled by vertices in V . Mobile agents are the
clients of the network and they are served by base stations.
This is done as follows: Every base station has a fixed fre-
quency; this is modeled by the coloring χ, i.e., colors repre-
sent frequencies. If an agent wants to establish a link with
a base station it has to tune itself to this base station’s fre-
quency. Since agents are mobile, they can be in the range of
many different base stations. The range of communication
of every agent is modeled by a hyperedge e ∈ E, which is the
set of base stations that can communicate with the agent.
To avoid interference, the system must assign frequencies
to base stations in the following way: For any range, there
must be a base station in the range with a frequency that
is not reused by some other base station in the range. This
is modeled by the conflict-free property. One can solve the
problem by assigning n different frequencies to the n base
stations. However, using many frequencies is expensive, and
therefore, a scheme that reuses frequencies, where possible,
is preferable.

The study of conflict-free colorings was originated in the
work of Even et al. [6] and Smorodinsky [12]. In addition to
the practical motivation described above, this new coloring
model has drawn much attention of researchers through its
own theoretical interest and such colorings have been the
focus of several recent papers (see, e.g., [6, 12, 10, 8, 7, 9, 5,
13, 1]).

Figure 1: Points on a line and intervals

The paper [7] considered the special case of the prob-
lem where the hypergraph is defined as follows: Vertices
are identified by points that lie on a line and E consists
of all subsets of V defined by intervals intersecting at least
one vertex. A line with n points has n(n + 1)/2 such sub-

sets (for every i ∈ {1, . . . , n}, there are n − i + 1 different
subsets containing i points). For n = 5, these subsets are
shown in figure 1. We call these subsets intervals because for
our problem, two intervals are equivalent if they contain the
same vertices. We represent colorings by listing the colors
of points from left to right in a string. For example, for the
points in figure 1 (n = 5), 12312 is a conflict-free coloring,
whereas 12123 is not.

Conflict-free coloring for intervals is important because it
can model assignment of frequencies in networks where the
agents’ movement is approximately unidimensional, e.g., the
cellular network that covers a single long road and has to
serve agents that move along this road. Also, conflict-free
coloring for intervals plays a role in conflict-free coloring for
more complicated range spaces (see [6]).

The static version of the problem, where the n points are
to be colored simultaneously, is solved in [6]. For n = 2k−1,
the coloring χk is defined recursively as follows: χk = 1
and χk+1 = χk ◦ (k + 1) ◦ χk (where ◦ is the concatenation
operator for strings). Coloring χk is conflict-free, and for
n with n < 2k − 1 the prefix of length n of χk is conflict-
free. This paper also shows that this coloring with 1+blg nc
colors is the best possible.

The problem becomes more interesting when the vertices
are given online by an adversary. Namely, at every given
time step t ∈ {1, . . . , n}, a new vertex vt ∈ V is given and
the algorithm must assign vt a color such that the coloring is
a conflict-free coloring of the hypergraph that is induced by
the vertices Vt = {v1, . . . , vt}. Once vt is assigned a color,
that color cannot be changed in the future. This is an online
setting, so the algorithm has no knowledge of how vertices
will be given in the future. For this version of the problem,
in the case of intervals, Fiat et al. [7] provide several algo-
rithms. Their randomized algorithm uses O(log n log log n)
colors with high probability. Their deterministic algorithm
uses O(log2 n) colors in the worst case. That algorithm re-
quires Ω(log2n) colors on some inputs. Recently, random-
ized algorithms that use O(log n) colors with high proba-
bility have been introduced in a slightly weaker adversary
model ([4, 2]). In the weaker model, the adversary has to
commit on a specific input sequence before revealing the first
vertex to the algorithm. In the terminology of [11, 3], this
is an oblivious adversary.

conflict-free coloring

dynamicstatic

offline online

absolute positions relative positions

Figure 2: Models for conflict-free coloring for inter-
vals

Our contribution. We introduce a hierarchy of four models
for the above conflict-free coloring problem for hypergraphs:

(i) static, (ii) dynamic offline, (iii) dynamic online with ab-
solute positions, and (iv) dynamic online with relative posi-
tions. Below we define these four models. The relationship
among them is shown in figure 2.

• In the static model, the complete hypergraph G is
given, and a conflict-free coloring for G must be found
by the algorithm.

In dynamic models, a sequence {Gt}n
t=1 of hypergraphs

(with G = Gn) is given where Gt has t vertices and, for
t > 1, Gt−1 is an induced subhypergraph of Gt; for ev-
ery t a conflict-free coloring for Gt must be found that, for
t > 1, extends the coloring of Gt−1 (i.e., the algorithm can
not change colors of vertices). Alternatively, the input is
a permutation of the vertices of the final hypergraph, and
Gt, the hypergraph to be colored at every time step, is the
subhypergraph of G induced by the first t vertices in the
permutation.

• In the dynamic offline model, the complete sequence
{Gt}n

t=1 is given.

In dynamic online models, the sequence {Gt}n
t=1 is re-

vealed incrementally, at discrete time steps t = 1, . . . , n,
i.e., at time t, Gt is given, and a color for the new vertex
vt must be found without knowledge of future Gt′ , where
t′ > t.

• In the dynamic online with absolute positions model, in
addition to {Gt}n

t=1 being revealed incrementally, the
final Gn = G is given from the start as a vertex-labeled
hypergraph and for each time t, Gt is also given as
a vertex-labeled hypergraph, with the induced subhy-
pergraph isomorphism between Gt and Gn preserving
the labels. This means that the algorithm knows for
every new vertex vt where it is going to lie (i.e., its
‘absolute’ position) in the final hypergraph G.

• In the dynamic online with relative positions model,
no information about the final hypergraph G is given
(not even its size n). The only information might be
the structure of the final hypergraph (for example, if
we are coloring points on a line with respect to inter-
vals). Thus, for every new vertex vt, we only know
its ‘relative’ position with respect to already inserted
points, by means of the information in Gt.

Related to applications, revealing absolute positions is not
unnatural in many cases: One can think of all base stations
being at fixed positions, which are known to the algorithm in
advance. This means that the algorithm is aware of the final
hypergraph that models the situation where all base stations
are activated. In the start, no base station is activated. Base
stations are constructed or activated one by one, in some
order, in response to increasing network traffic. Every new
station has to be given a color by the algorithm, such that
the conflict-free property is maintained.

In the case of intervals, the four models produce a strict hi-
erarchy of models, in the sense that an adversary in a higher
model has more power and an algorithm for a higher model
works also for a lower model. A summary of results for de-
terministic algorithms for conflict-free coloring with respect
to intervals is given in table 1. All the online algorithms con-
sidered so far in the literature work in the relative positions

model. Our main technical results concern two determinis-
tic algorithms that use 2blg(n+1)c and 3dlog3 ne ≈ 1.89 lg n
colors, respectively, in the slightly changed online model
of absolute positions. We also exhibit sequences of length
n = 3k that need at least 1 + 2 log3 n ≈ 1.26 lg n colors in
any dynamic model, and then we outline an algorithm that
uses at most 1 + log3/2 n ≈ 1.71 lg n colors in the dynamic
offline model. In the relative positions model, we resolve an
open problem posed in [7]: We give a tight analysis on the
performance of the fully greedy online algorithm (FG), and
prove that it uses bn/2c+ 1 colors in the worst case.

Finally, we discuss coloring with respect to a specific sub-
set of all intervals. One interesting case is coloring with
respect to rays (or halflines), namely the subset of intervals
that contain either of the two extreme points, for which we
show a strong separation between static and dynamic offline
models, in the sense that in the static model three colors suf-
fice for any n, whereas in the dynamic offline model blg nc+1
colors might be needed. On the other hand, blg (n− 2)c+ 3
colors are enough even in the relative positions model.

Paper organization. In section 2, we introduce two ways
to describe input to dynamic and online algorithms in the
case of intervals. In section 3, we consider the dynamic of-
fline model. In section 4, we give O(log n) algorithms in
the absolute positions model. In section 5, we analyze the
worst-case behavior of the fully greedy algorithm. In sec-
tion 6, we study conflict-free coloring with respect to rays.
In section 7, we discuss some of the results and mention
open problems.

2. PRELIMINARIES
We show two ways to represent inputs for dynamic mod-

els, in the intervals case. We will be using them in subse-
quent sections.

In the relative positions model, the sequence of points in-
serted can be described by the position in which each new
point is inserted, relative to previously inserted points. If
i − 1 points have already been inserted, the i-th point can
be inserted in any of i positions described by an integer in
the range [0, i− 1]: 0 is for the new point in the start of the
sequence (before any other point), and k > 0 is for the new
point immediately after the k-th already inserted point.

An insertion sequence of length n is represented by a
string of n integers, σ, where 0 ≤ σ(i) ≤ i − 1. If we
consider insertion sequences of the same length n ordered
lexicographically, then the first and last elements in that or-
der are: sfirst

n = [0, 0, 0, . . . , 0], slast
n = [0, 1, 2, . . . , n − 1]. In

the relative positions online model, an insertion sequence is
revealed from left to right, one by one, to the online algo-
rithm. There are n! possible insertion sequences of length
n.

In the absolute positions model, initially the algorithm
knows the total number of points to be inserted. Then,
for each new point the absolute position of that point in
the final sequence is revealed to the algorithm. The abso-
lute position can be any number in {1, . . . , n} which has not
appeared before. Thus, the input to the algorithm is a per-
mutation π ∈ Sn that is revealed one by one, from left to
right.

In the dynamic offline setting, the input can be given in
either absolute or relative positions, because the two repre-
sentations are easily convertible to each other if the whole

model lower bound upper bound

dynamic online, relative positions 1 + 2 log3 n [this paper] O(log2 n) [7]
dynamic online, absolute positions 1 + 2 log3 n [this paper] 3dlog3 ne [this paper]

dynamic offline 1 + 2 log3 n [this paper] 1 + log3/2 n [this paper]
static 1 + blog2 nc [6] 1 + blog2 nc [6]

Table 1: Number of colors used in deterministic algorithms for intervals

sequence is known. For example, the insertion sequence
σ = 00121 corresponds to the permutation π = 51342, which
means the first point inserted is at the 5th absolute position
(rightmost), the second point inserted is at the 1st absolute
position (leftmost), and so on.

3. DYNAMIC OFFLINE MODEL

Lower bound. For every k, we exhibit an insertion se-
quence πk of absolute positions that has length n = 3k and
needs 2k + 1 = 2 log3 n + 1 colors to be conflict-free colored.

Definition 1. Given a string π of numbers and x ∈ IN, we
define the string (π + x) by adding x to each element of π,
i.e., (π + x)(i) = π(i) + x, for i ∈ {1, . . . , len(π)}.

The insertion sequences are defined recursively as follows:

π1 = 132 and πk+1 = πk ◦ (πk + 2 · 3k) ◦ (πk + 3k)

For example, π2 = 132798465, or in relative positions no-
tation σ2 = 011344344.

Proposition 1. Input πk needs at least 2k + 1 colors in
the dynamic model.

Proof outline. The proof is by induction. The induc-
tive step is based on the fact that πk consists of three shifted
πk−1 insertion orders that correspond to the leftmost 3k−1,
middle 3k−1, and rightmost 3k−1 points. Each of these three
parts of the coloring has to use at least 2k−1 colors (by the
inductive hypothesis). However, maintaining the conflict-
free property for intervals that span more than one of the
three parts needs 2k + 1 colors in total: It can be proved
that after the insertion of the first 2 · 3k−1 points of πk at
least 2k colors have to be used, and after the insertion of
all points, one additional new color has to be used, which
brings the total number of colors to 2k + 1.

Upper bound. The dynamic offline case can be viewed as
a static problem, because dynamically coloring the sequence
{Gt}n

t=1 is equivalent to statically coloring the hypergraph
G(V,

Sn
t=1 Et), where Et is the hyperedge set of Gt. In [6],

a general framework for conflict-free coloring is presented:
The authors provide an algorithm (Algorithm 1 in the pa-
per) that colors the points in iterations. At the `-th itera-
tion, some points are colored with color ` and these colored
points are not considered in the subsequent iterations. It is
not hard to prove the following:

Proposition 2. If the algorithm in [6] is applied to a hy-
pergraph G(V,

Sn
t=1 Et) arising from intervals, then in each

iteration of the algorithm at least a third of the remaining
points is colored. As a result, the algorithm uses at most
log3/2 n + 1 colors.

4. ABSOLUTE POSITIONS MODEL
In this section we present two algorithms that use O(log n)

colors in the absolute positions model. Both of the algo-
rithms use recursion, but in a different way, to choose points
that will have a unique color for each interval. In a sense, a
point p with a unique color in an interval acts as a separa-
tor : Points to the left of p and points to the right of p can
be colored independently, and colors can be freely reused.
Choice of the right separators means that a few colors are
used.

The first algorithm chooses the separators in each level
and uses the recursion to color the independent sections to
the left and to the right of separators. The second algorithm
adopts the opposite approach of coloring two thirds of the
points with a greedy non-recursive scheme in each level and
of coloring the separators by using the recursion. We opt to
show both approaches because we feel that both methodolo-
gies are instructive and we hope to get better results with
either one.

4.1 An asymptotically 2 log2 n algorithm
We present a recursive algorithm in the absolute posi-

tions model, that uses 2blg(n − 1)c + 2 colors to color any
input of size n. The core of the algorithm is a way to
color any permutation π of absolute positions of points with
b = b(n) = 2|bin(n−1)| colors1, such that the two maximum
colors uL

b = b− 1 and uR
b = b occur uniquely and ‘relatively

close’ to the center of the coloring. Color uL
b appears to the

left of the center and color uR
b appears to the right. ‘Rel-

atively close’ means that these unique colors both appear
somewhere in the n/2 central points of the coloring (each at
most n/4 from the center point). We denote the maximum
number of points the algorithm can color with b colors by
n̂(b) = 2b/2.

Formally, given l ≤ n̂(b(n))/2, r ≤ n̂(b(n))/2, the follow-
ing intervals are defined, in a l + r = n length coloring:

• leftmost interval : from 1 to bl/2c

• left middle interval : from bl/2c+ 1 to l

• right middle interval : from l + 1 to l + dr/2e

• rightmost interval : from l + dr/2e+ 1 to l + r

(l and r can also be 0 or 1, in which case, some intervals are
empty). The leftmost and the left middle intervals comprise
the left part of the coloring and the right middle and right-
most intervals comprise the right part of the coloring. The
size of the intervals is shown below:

lz }| {
leftmost| {z }

bl/2c

| left middle| {z }
dl/2e

|

rz }| {
right middle| {z }

dr/2e

| rightmost| {z }
br/2c

1For x ∈ IN+, |bin(x)| is the length of the binary represen-
tation of x, which is 1 + blg xc.

We remark that there is a slight preference to the middle
intervals (use of the ceiling, instead of the floor function).
This will prove helpful later in the proof of correctness of
the algorithm.

The algorithm colors any permutation π of length n, in a
way such that at most b colors are used and if l ≥ 1, then uL

b

occurs uniquely, somewhere in the left middle interval and
if r ≥ 1, then uR

b occurs uniquely, somewhere in the right
middle interval:

lz }| {
.| {z }
bl/2c

| . . . uL
b . . .| {z }

dl/2e

|

rz }| {
. . . uR

b . . .| {z }
dr/2e

|| {z }
br/2c

This is achieved by reserving color uL
b for the first point that

appears in the left middle interval and never reusing it, and
by reserving uR

b for the first point that appears in the right
middle interval and never reusing it.

Initially, if the algorithm is given n points, in order to use
b = b(n) colors, it has to partition the points into two parts
such that l ≤ n̂(b)/2 and r ≤ n̂(b)/2, so, one possible choice
is l = bn/2c and r = dn/2e, which tries to balance the sizes
of the two parts. The left part of the coloring is colored by a
subroutine L and the right part by a subroutine R. Also, the
insertion of the first point in a middle interval determines
the way recursion will be applied to the remaining points in
this middle interval: Points to the left of this first inserted
point are colored with a recursive call to R and points to the
right with a recursive call to L (notice the contrast between
position of points and subroutine applied to them). The
recursion is shown in detail in figure 3 (Lx signifies use of
subroutine L with x colors; similarly for Rx).

Lbz }| {
.| {z }
Lb−2

| . . .|{z}
Rb−2

uL
b . . .|{z}

Lb−2

|

Rbz }| {
. . .|{z}

Rb−2

uR
b . . .|{z}

Lb−2

|| {z }
Rb−2

Figure 3: The recursion in a coloring

The algorithm is named 2CU (from 2 Central Unique col-
ors) and is given in figure 4. A property of the algorithm is
that the coloring of the two parts (left and right) are inde-
pendent of each other.

Correctness of the algorithm. Since a coloring is just a
concatenation of a part that is colored by an Lb subroutine,
followed by a part that is colored by an Rb subroutine, it is
enough to prove the following proposition.

Proposition 3. If Lb is applied on any l points with 0 ≤
l ≤ n̂(b)/2, it gives a legal coloring CL

b at all times (i.e., in
the dynamic online sense). If Rb is applied on any r points
with 0 ≤ r ≤ n̂(b)/2, it gives a legal coloring CR

b at all times
(i.e., in the dynamic online sense). Moreover, any partial
CL

b can be concatenated with any partial CR
b to give a legal

coloring CL
b ◦ CR

b , at all times.

Proof. By induction on the number of colors used at
most (i.e., b colors).

Base (b is at most 2): For 0 ≤ l ≤ 1, 0 ≤ r ≤ 1 the
colorings are shown in table 2 and are correct.

Inductive step: Assume the hypothesis is true for b − 2
colors, then we will prove it is true for b colors.

l \ r 0 1
0 ε 2
1 1 1 2

Table 2: Colorings that use less than or equal to 2
colors

As long as no point in the two middle intervals has ap-
peared, the coloring is done only in the leftmost and the
rightmost interval, using colors up to b− 2:

Lbz }| {
.| {z }
Lb−2

| | {z }
empty

|

Rbz }| {
| {z }
empty

|| {z }
Rb−2

By induction, the coloring up to that point is legal at all
times, because each interval has size at most n̂(b)/4 = n̂(b−
2) (so b−2 colors suffice) and by the induction these colorings
of the leftmost and rightmost interval can be concatenated
to give a legal coloring.

Then, eventually, some point in the middle intervals is
requested. W.l.o.g., assume it is in the left middle interval,
so it gets color uL

b :

Lbz }| {
.| {z }
Lb−2

| uL
b |

Rbz }| {
| {z }
empty

|| {z }
Rb−2

This uL
b color will remain unique, so for proving correct-

ness, from now on, we have to consider only intervals not
containing uL

b .
From now on, points in the left middle interval that are

before the uL
b -colored one are colored with subroutine Rb−2

(see figure 3). The size of this interval where Rb−2 is used is
at most n̂(b)/4 = n̂(b− 2), so this interval is legally colored,
by the inductive hypothesis. Also, when combined with the
leftmost interval which is colored by Lb−2 and which also
has size at most n̂(b)/4 = n̂(b− 2), those two intervals con-
catenated together, are always legally colored.

For points to the right of the uL
b -colored one, as long as no

point in the right middle interval has been requested, either
the Lb−2 subroutine is used for points in the left middle
interval (see figure 3), or the Rb−2 subroutine is used for
points in the rightmost interval. These two intervals are
both of length at most n̂(b)/4 = n̂(b − 2), so by induction,
are always legally colored, and their concatenation is legally
colored.

However, as soon as the first point in the right middle
interval is requested, it gets color uR

b and this color will
remain unique:

Lbz }| {
.| {z }
Lb−2

| . . .|{z}
Rb−2

uL
b . . .|{z}

Lb−2

|

Rbz }| {
uR

b || {z }
Rb−2

By the uniqueness of uR
b , from now on we only have to con-

sider intervals that do not contain this uR
b -colored point.

In the right middle interval and to the left of the uR
b -

colored point, the Rb−2 subroutine is used, which, combined
with the Lb−2 colored interval to the right of uL

b , by induc-
tion, gives a legal coloring. Also the right middle interval
points to the right of the uR

b -colored point, are colored with
the Lb−2 subroutine, which combined with the Rb−2 colored

coloring algorithm 2CU with b colors:
break the n points in a left and a right part

(of lengths l = bn/2c, r = dn/2e)
for each point appearing online do

if point is in left part
color it with subroutine L and b colors

if point is in right part
color it with subroutine R and b colors

subroutine L with b colors:
break the left part in a leftmost and a left middle interval
if the point is in the leftmost interval

color it with subroutine L and b− 2 colors
if the point is in the left middle interval

if the left middle interval is empty

give color uL
b = b− 1 to the point

else (uL
b has been used in this left middle interval)

if point is to the left of uL
b in the left middle interval

color it with subroutine R and b− 2 colors

if point is to the right of uL
b in the left middle interval

color it with subroutine L and b− 2 colors

subroutine R with b colors:
break the right part in a right middle and a rightmost interval
if the point is in the rightmost interval

color it with subroutine R and b− 2 colors
if the point is in the right middle interval

if the right middle interval is empty

give color uR
b = b to the point

else (uR
b has been used in this right middle interval)

if point is to the left of uR
b in the right middle interval

color it with subroutine R and b− 2 colors

if point is to the right of uR
b in the left middle interval

color it with subroutine L and b− 2 colors

Figure 4: Algorithm 2CU

rightmost interval, by induction, is always legally colored
(check figure 3; all mentioned intervals are of length at most
n̂(b)/4 = n̂(b− 2)/2).

Slight improvements over the 2CU algorithm. As we

mentioned, algorithm 2CU can color up to 2b/2 points if
given b colors. Without any significant change to the algo-
rithm, one can prove that if the algorithm is given b col-
ors it also works correctly for all instances that have up to
2·2b/2−2 points (this is almost the double number of points).
Equivalently, the algorithm can be made to use 2blg(n+1)c
colors.

One can also use low numbered colors for the central
uniquely colored points and use colors based on the size of
the subintervals that are to be colored in the recursion (i.e.,
not always b−2, but maybe less, because the subinterval can
be small). This can also lead to some decrease of colors in
some instances, but it does not give significant improvement
in worst case instances.

4.2 An asymptotically 3 log3 n algorithm
We sketch a recursive algorithm in the absolute positions

model, that uses 3dlog3 ne colors to color any input of size

n. Asymptotically, this is 1.89 lg n, and thus the algorithm
performs better than 2CU, which was given in the previ-
ous subsection. Triples of consecutive points play a major
role in the algorithm and this is why we call it the ‘triples’
algorithm.

To prove the above bound, it suffices to show a method
of conflict-free coloring any input of size 3k with 3k colors,
because, in that case, if 3k−1 < n ≤ 3k then the algorithm
takes the n-sized input, attaches (in any insertion order)
3k − n dummy points to the right of the n points, solves
the 3k-sized instance with the method to get a conflict-free
coloring with 3k colors, and then it discards the colors of the
dummy points to get a conflict-free coloring of the original
n points.

If n = 3k, points are colored in k levels that correspond
to recursion call levels of the algorithm and each level uses
three colors. At each level ` ∈ {1, . . . , k}, some of the points
are colored and the rest are deferred for coloring at a higher
level. More precisely at each level `, with ` < k, two thirds of
the points are colored in that level and the rest (one third)
are deferred. Thus, for each level ` < k of the recursion,
out of the 3k+1−` points that reach the level, 2 · 3k−` are
colored in that level and 3k−` are deferred for coloring in

recursion level input size points colored points deferred colors used

1 3k 2 · 3k−1 3k−1 1, 2, 3
.
` 3k+1−` 2 · 3k−` 3k−` 3`− 2, 3`− 1, 3`

.
k − 1 9 6 3 3k − 5, 3k − 4, 3k − 3

k 3 3 0 3k − 2, 3k − 1, 3k

Table 3: Recursion levels of the triples algorithm

a higher level. The final level k is special because all three
points that reach it are colored in that level. This situation
is shown in table 3, where, by convention, level ` uses colors
3`− 2, 3`− 1, and 3`.

Now, we describe how the algorithm decides at each level
which points to color and which to defer. At each level `,
with ` < k, the algorithm partitions the points in triples,
according to their absolute positions: The three leftmost
points are in the first triple, the second three leftmost points
are in the second triple, and so on, until the final triple
which contains the three rightmost points. For every triple,
the first point that is requested to be colored in the triple is
deferred for coloring in a higher level, whereas the other two
points are colored at level `. Also, for ` < k, the input at
level `, which we denote by π〈`〉, induces an input π〈`+1〉
at level ` + 1 as follows: The absolute positions of triples
at level ` give the absolute positions of points and points
in ` + 1 are requested in the same order as the first points
of triples in `. Initially, the input at level 1, i.e., π〈1〉, is
set equal to the original input π. For example, consider the
input π = 923745618, revealed to the online algorithm, one
by one element, from left to right. In order to exhibit better
how the algorithm runs, we take the inverse permutation of
π, which maps absolute positions of points to the time they
are requested:

π−1 = π−1
〈1〉 = 823 567 491

This is the input for level 1 (as denoted by the subscript)
and we also have highlighted the first point requested in
every triple. The above induces the following input for level
2: π−1

〈2〉 = 231, or π〈2〉 = 312.

Now, we explain how the algorithm colors points in a spe-
cific level. If a new point p is requested that is decided
to be colored in level ` (i.e., not deferred for coloring in a
higher level), the algorithm finds the set of all points P al-
ready colored at level ` with the following property: p′ is
in P , if there is no point deferred for coloring in a higher
level between p and p′. It is not hard to see that there
are at most three already inserted (and colored) points with
this property. The algorithm chooses the color of p using a
greedy coloring scheme, i.e., by choosing the minimum color
possible among 3` − 2, 3` − 1, and 3`, so that the interval
containing P ∪ {p} remains conflict-free. The coloring at
each level `, corresponding to input π〈`〉, is denoted by χ〈`〉;
it is a partial coloring for ` < k, because only two thirds of
the points are colored.

The run of the algorithm on the example input mentioned
above is shown in figure 5. The ‘∗’ denote points that are to
be colored in a higher level and χ denotes the final coloring.

The correctness of the algorithm is immediate from the
following result:

π−1
〈1〉 = 8 2 3 5 6 7 4 9 1

χ〈1〉 = 1 ∗ 1 ∗ 1 3 2 1 ∗

π−1
〈2〉 = 2 3 1

χ〈2〉 = 5 6 4

χ = 1 5 1 6 1 3 2 1 4

Figure 5: A run of the triples algorithm

Proposition 4. At any time t ∈ {1, . . . , n}, in any in-
terval I of points, there is a point in I colored with a unique
color in I. Moreover, a uniquely colored point can always
be found among the points that were colored in the deepest
recursive level of points in I.

The following lemma is helpful in the proof of the above:

Lemma 1. Any conflict-free coloring of x < 4 points, can
be extended to a conflict-free coloring of x + 1 points, with
at most three colors, for any position of the x + 1-th point,
by using the greedy coloring scheme.

Proofs of proposition 4 and lemma 1 are not hard and are
omitted in this short version of the paper.

5. RELATIVE POSITIONS MODEL
In this section, we analyze an algorithm in the relative

positions model. The fully greedy algorithm (FG) for online
conflict-free coloring for intervals, mentioned in [7], works
as follows: For the next point to color, it chooses the min-
imum color that maintains the conflict-free coloring prop-
erty. For example, the greedy algorithm colors insertion
sequence σ = 010322 (π = 251643 in absolute positions)
as follows: [.1], [.1 . .2 .], [21 . .2 .], [21 . .23], [21 .323],
[214323]. We have the following tight result for FG:

Theorem 1. For n ≥ 2, the maximum number of colors
used by FG for inputs of length n is dn/2e+ 1.

In order to establish the above result, in the following, we
prove a lower bound for FG and a matching upper bound.

Lower bound for FG. There are sequences which force
the FG algorithm to use O(n) colors: We will prove that
sequence 00(20)i1, of length 2i + 3, uses i + 3 colors. We
need the following lemma:

Lemma 2. Insertion sequence 00(20)i uses i + 2 colors
and the two leftmost colors in the coloring are i + 2, i + 1.
The third and fourth leftmost colors, in case i > 0 are i,
i + 1.

Proof outline. By induction. Base case (i = 0 and 1):
00 gives the coloring 21 and 0020 gives the coloring 3212.
For the Inductive step: By induction, the coloring for i > 0
is:

ci = i + 2 i + 1 i i + 1 . . .

The next insertion (at position 2) is between i + 1 and
i. It has to get color i + 2, because if it would get another
smaller color (i + 1 is also impossible), then this color could
also be used as the color occurring in the leftmost position
of ci. The coloring becomes:

i + 2 i + 1 i + 2 i i + 1 . . .

The next insertion (at position 0) can not get a color among
i + 2, i + 1, i. It can not get any other already used color,
because then this color could also be used as the color oc-
curring in the leftmost position of ci. So, a new color has to
be used and we get:

ci+1 = i + 3 i + 2 i + 1 i + 2 . . .

Lemma 3. Insertion sequence 00(20)i1 uses i + 3 colors.

Proof outline. We augment the coloring of 00(20)i we
have from lemma 2, which is:

i + 2 i + 1 . . .

The insertion (at relative position 1) between colors i + 2
and i + 1 has to get a new color, because any other color,
except i + 2 which is in any case impossible, would be cho-
sen by the FG algorithm when coloring 00(20)i, in the last
insertion.

This establishes the following lower bound on the number
of colors used by FG:

Proposition 5. For every n ≥ 2, there are insertions
sequences of length n that force the fully greedy algorithm to
use dn/2e+ 1 colors.

Upper bound for FG. In order to prove an upper bound on
the number of colors used by the FG algorithm, we consider
uniquely occurring colors in a coloring.

Lemma 4. In any FG coloring there are at most three dis-
tinct colors with the following property: each of these colors
occurs exactly once.

Proof outline. Assume the three colors x, y, z that
occur uniquely in a coloring by FG:

. . . x . . . y . . . z . . .

W.l.o.g., a new point can be inserted:

• either between y and z, in which case color x is eligible
(gives a conflict-free coloring),

• or after z, in which both colors x and y are eligible.

In any case, FG will introduce no new color for the new
point, since FG chooses the minimal eligible color.

We remark that we can have 1, 2, or 3 uniquely occurring
colors in a coloring by FG, as exhibited by the insertion
sequence σ = 011 which is colored as 132 by FG.

Proposition 6. For n ≥ 2: No insertion sequence of
length n forces the fully greedy algorithm to use more than
dn/2e+ 1 colors.

Proof. Consider a coloring by FG of n points. If k colors
are used and u of them occur uniquely, then k − u colors
occur at least as duplicates, and n ≥ 2(k − u) + u, which
gives 2k ≤ n + u and since k is integer:

k ≤
jn + u

2

k
≤

—
n + 3

2

�
=

ln

2

m
+ 1

because u ≤ 3 (by lemma 4).

Theorem 1 follows immediately from propositions 5 and 6.

Remark 1. The upper bound technique for FG can also be
applied to the unique max algorithm (UM), a simple algo-
rithm that is used as a component in other more elaborate
algorithms, including the O(log2 n) algorithm of [7]. Our
technique gives an upper bound of dn/2e + 2 for the num-
ber of colors used by UM. However, in contrast to the tight
analysis for FG, only insertion sequences that force UM to
use Θ(

√
n) colors have been found (see [7]).

6. COLORING WITH RESPECT TO A SUB-
SET OF THE SET OF ALL INTERVALS

We relax the conflict-free coloring problem of intervals as
follows. Instead of the requirement that all intervals need to
have a uniquely colored point, it is required that the conflict-
free condition holds only for intervals in a specific subset of
the set of all intervals. Examples are coloring with respect
to all intervals of a specific length, say k, or all intervals of
length up to k.

Another interesting case arises from the intervals that con-
tain either of the two extreme points. Equivalently, these are
intervals that are defined by halflines (infinite intervals), or
rays. We therefore refer to the problem as conflict-free col-
oring with respect to rays. The motivation for considering
this restricted subset comes from agents whose movement
range is not strictly inside the line segment between the two
extreme points. We also want to point out how different are
the results and the gaps between models, related to the all
intervals case.

For n points there are 2n−1 ray defined intervals, of which
n contain the leftmost point and are called prefix intervals
and n contain the rightmost point and are called suffix in-
tervals (the interval containing all points is both a prefix
and a suffix interval).

In the static model, the coloring 133 . . . 332 (i.e., color the
extreme points with unique colors and use the same color
for all non-extreme points) suffices for all n and uses three
colors. It is not hard to see that three colors are required
for n ≥ 4 (for n = 3 the coloring 121 with two colors is a
conflict-free coloring).

To analyze the problem in the dynamic models, we con-
sider first coloring with respect to prefix intervals only (the
suffix case has the same bounds, because it is symmetric).
In the static model for prefixes, the coloring 122 . . . 22 is a
conflict-free coloring with 2 colors. Obviously, this color-
ing is optimal. In the dynamic models for prefixes, we will

first prove a lower bound of 1 + blg nc already for the dy-
namic offline model and then provide an algorithm using
2+ blg(n− 1)c colors already in the relative position model.

Proposition 7. In the dynamic (offline) model, input
σ = 0n needs 1 + blg nc colors to be conflict-free colored
with respect to prefixes.

Proof outline. The i-th point inserted is always at the
left of all previously inserted points and thus contributes i
new intervals. In fact, by viewing the dynamic problem as a
static problem (as we did in section 3), it can be proved that
coloring 0n with respect to prefixes is equivalent to coloring
n points statically with respect to (all) intervals. Thus, at
least 1 + blg nc colors are needed.

We propose the following algorithm for coloring prefixes:
The algorithm colors differently

(a) points that appear before all previously inserted points,

(b) points that appear after at least one previously in-
serted point.

The first group of points contains points for which σ(i) = 0,
and the second group points for which σ(i) > 0. Therefore,
it is possible to distinguish between the two groups even
in the relative positions model. Points in the first group
are colored according to the static coloring for intervals:
. . . 41213121. Points in the second group are all colored with
the same color, which is different from the colors used in the
first group. For example, input σ = 010120020 is colored
as 131?2??1?, where ‘?’ is the color used for points in the
second group.

From the above, it is not hard to derive the following
result:

Proposition 8. For n ≥ 2, there is an algorithm that
conflict-free colors with respect to prefixes any insertion se-
quence σ (in the relative positions model) with at most 2 +
blg(n− 1)c colors.

Finally, we use the upper bound for prefixes (and suf-
fixes) to prove an upper bound for rays. We claim that for
dynamically coloring with respect to rays, one more color
than the prefix (or suffix) case suffices. The idea is to use
a unique color for the first point p inserted, and then color
independently points to the left of p from points to the right
of p: color whatever is inserted to the left of p with respect
to prefixes and whatever is inserted to the right of p with
respect to suffixes. From the above, it is not hard to prove:

Proposition 9. For n ≥ 3, there is an algorithm that
conflict-free colors with respect to rays any insertion se-
quence σ (in the relative positions model) with at most 3 +
blg(n− 2)c colors.

model lower bound upper bound

all dynamic 1 + blg nc 3 + blg(n− 2)c
static 3 3

Table 4: Number of colors used in deterministic al-
gorithms for rays (n ≥ 3)

The above analysis gives a separation between static and
dynamic models for coloring with respect to rays: The num-
ber of colors used is a logarithmic factor apart. All the
results are shown in table 4. This is in contrast with the all-
intervals case in which the separation result between static
and dynamic offline model is weaker, just a constant factor
apart, 1 + lg n and 1 + log3/2 n colors used, respectively.

7. DISCUSSION AND OPEN PROBLEMS
We introduced a hierarchy of models for conflict-free col-

oring ranging from a completely static model (weakest ad-
versary model) to a fully online model (strongest adversary
model). We concentrated on conflict-free coloring with re-
spect to intervals. For this special case, we proposed deter-
ministic algorithms for some of the models and gave upper
bounds on their worst-case performance. We also provided
lower bounds on the number of colors used in some models.

There are still gaps between lower and upper bounds. For
example, in the dynamic offline model the lower bound is
1 + 2 log3 n ≈ 1.26 lg n, whereas the upper bound is 1 +
log3/2 n ≈ 1.71 lg n, a constant factor apart. The situa-
tion is similar in the absolute positions model where the
upper bound is approximately 1.89 lg n. The most impor-
tant open problem is narrowing the gap between lower and
upper bound in the relative positions model: Ω(log n), and
O(log2 n), respectively, which are a logarithmic factor apart.

So far in the literature, only the static and the fully online
(relative positions) models had been considered. If there is a
gap on the number of colors used between these two extreme
models, the hierarchy can help pin-point exactly where the
‘jump’ occurs, and thus give a better understanding of the
problem. In the case of all-intervals, static uses O(log n) and
the best known online deterministic algorithm O(log2 n) col-
ors, but this logarithmic factor ‘jump’ is not a result of the
online model, because it occurs just between the absolute po-
sitions model and the fully online (relative positions) model.
However, it can not always be the case that the jump occurs
between these two models: As we have seen in the rays case,
a logarithmic factor jump occurs between the static and the
dynamic offline model.

Another open problem is removing the following possible
shortcoming from the absolute position O(log n) algorithms:
Both 2CU and the triples algorithms might use too many
colors for the first requests. For example, in the triples al-
gorithm, for final size of input n = 3k, the adversary can
request the first k points in such a way such that the algo-
rithm uses k different colors.

Finally, the hierarchy of models is not constrained to prob-
lems for points on the real line. It can be used in conflict-free
coloring for hypergraphs, in general. A possible use of the
hierarchy would be to understand better conflict-free color-
ing problems in the plane.

Acknowledgements
We would like to thank János Pach and David Peleg for
helpful discussions concerning the problems studied in this
paper. We would also like to thank the reviewers for their
comments.

8. REFERENCES
[1] Noga Alon and Shakhar Smorodinsky. Conflict-free

colorings of shallow discs. To appear in 22nd Annual

ACM Symposium on Computational Geometry, 2006.

[2] Amotz Bar-Noy, Panagiotis Cheilaris, and Shakhar
Smorodinsky. Online conflict-free coloring for
hypergraphs. Manuscript, 2006.

[3] Allan Borodin and Ran El-Yaniv. Online computation
and competitive analysis. Cambridge University Press,
1998.

[4] Ke Chen. On how to play a coloring game against
color-blind adversaries. To appear in 22nd Annual
ACM Symposium on Computational Geometry, 2006.

[5] Khaled Elbassioni and Nabil H. Mustafa. Conflict-free
colorings for rectangle ranges. To appear in 23rd
International Symposium on Theoretical Aspects of
Computer Science (STACS), 2006.

[6] Guy Even, Zvi Lotker, Dana Ron, and Shakhar
Smorodinsky. Conflict-free colorings of simple
geometric regions with applications to frequency
assignment in cellular networks. SIAM Journal on
Computing, 33:94–136, 2003. Also in Proceedings of
the 43th Annual IEEE Symposium on Foundations of
Computer Science (FOCS), 2002.

[7] Amos Fiat, Meital Levy, Jǐŕı Matoušek, Elchanan
Mossel, János Pach, Micha Sharir, Shakhar
Smorodinsky, Uli Wagner, and Emo Welzl. Online
conflict-free coloring for intervals. In Proceedings of

the 16th Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA), pages 545–554, 2005.

[8] Sariel Har-Peled and Shakhar Smorodinsky.
Conflict-free coloring of points and simple regions in
the plane. Discrete and Computational Geometry,
34:47–70, 2005.

[9] Haim Kaplan and Micha Sharir. Online CF coloring
for halfplanes, congruent disks, and axis-parallel
rectangles. Manuscript, 2004.

[10] János Pach and Géza Tóth. Conflict free colorings. In
Discrete and Computational Geometry, The
Goodman-Pollack Festschrift, pages 665–671. Springer
Verlag, 2003.

[11] Prabhakar Raghavan and Marc Snir. Memory versus
randomization in on-line algorithms. In Proceedings of
the 16th International Colloquium on Automata,
Languages and Programming (ICALP), pages
687–703, 1989.

[12] Shakhar Smorodinsky. Combinatorial Problems in
Computational Geometry. PhD thesis, School of
Computer Science, Tel-Aviv University, 2003.

[13] Shakhar Smorodinsky. On the chromatic number of
some geometric hypergraphs. In Proceedings of the
17th Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA), 2006.

